|
|
Study on simulation and compensation of 110kV power cable sheath voltage |
XU Lixin, WANG Peng, CHEN Libin |
State Grid Yixing Power Supply Company, Wuxi, Jiangsu 214000 |
|
|
Abstract Aiming at the problem that the cable is laid asymmetrically due to urban construction, which leads to excessive induced voltage of cable sheath, an inductive voltage compensation method for cable sheath based on inductance compensation is proposed. First, the induced voltage of cable sheath of single circuit and double circuits is theoretically deduced, and the induced voltage value of each phase sheath under symmetrical and asymmetric laying conditions is obtained. Then the principle of inductance compensation method is introduced, and the sheath voltage of single and double circuit cables is simulated and analyzed through PSCAD/EMTDC software. The sheath induced voltage before and after compensation is compared, and the feasibility of inductance compensation technology is verified. Finally, a prototype is made to test the cable laid in Nanjing and other regions on the spot to verify the correctness of the simulation data. Through comparison, it is found that there is a good coincidence effect. The study results show that the compensation effect is proportional to the number of compensation turns, and the shorter the air gap length is, the higher the compensation effect will be without overcompensation.
|
Received: 09 January 2023
|
|
|
|
Cite this article: |
XU Lixin,WANG Peng,CHEN Libin. Study on simulation and compensation of 110kV power cable sheath voltage[J]. Electrical Engineering, 2023, 24(3): 36-43.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I3/36
|
[1] 赵丽惠, 姜幸, 钱伟, 等. 交联聚乙烯电缆绝缘老化超低频介损试验及评价规程研究[J]. 电气技术, 2021, 22(11): 63-68. [2] 黄宇, 吴长顺, 孙利. 高压电缆用缓冲层材料体积电阻率测试方法研究[J]. 电气技术, 2020, 21(10): 123-126, 132. [3] 李映桥, 王学冬, 徐青龙, 等. 城市地下电缆路径检测系统的研究与设计[J]. 电气技术, 2020, 21(8): 73-79, 86. [4] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. [5] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819. [6] 罗兵, 孟繁博, 王婷婷, 等. 脱气处理对高压直流电缆绝缘特性的影响[J]. 电工技术学报, 2021, 36(增刊2): 730-735. [7] 周自强, 刘学忠, 王少华, 等. 500kV XLPE海底电缆绝缘及护套暂态电压仿真计算[J]. 高电压技术, 2018, 44(8): 2725-2731. [8] 马宏忠, 倪欣荣, 黎腊红, 等. 高压电力电缆护层感应电压的补偿研究[J]. 高电压技术, 2007, 33(3): 148-151, 183. [9] 齐伟强, 任志刚, 陈平, 等. 220kV城市长电缆芯线及护层中操作过电压研究[J]. 电瓷避雷器, 2020(6): 95-101, 108. [10] 张重远, 芮皓然, 刘贺晨, 等. 高压单芯电缆金属护套感应电压仿真计算及最大允许敷设长度研究[J]. 高压电器, 2020, 56(5): 143-148. [11] 王雄伟, 张哲, 尹项根, 等. 多回单芯电力电缆并联运行护套感应电压的计算与分析[J]. 电力系统保护与控制, 2015, 43(22): 77-84. [12] 任姝. 电缆金属护层感应电压的产生及其抑制措施研究[J]. 现代科学仪器, 2018(4): 154-157. [13] 丛秋爽. 排列方式对降低电缆金属护层感应电压的影响分析[J]. 山东电力技术, 2019, 46(12): 42-46. [14] 周自强, 刘学忠, 王少华, 等. 500kV XLPE海底电缆绝缘及护套暂态电压仿真计算[J]. 高电压技术, 2018, 44(8): 2725-2731. [15] 邓军. 35kV单芯电力电缆金属屏蔽层交叉互联接地错误的分析与处理[J]. 电气技术, 2019, 20(2): 105-107. [16] 胡振兴, 肖静, 丁唯, 等. 110kV电缆单端接地护层感应电压的计算与仿真[J]. 通信电源技术, 2019, 36(1): 233-237. [17] 吴志祥, 周凯, 何珉. 高压电缆交叉互联系统的3种优化接地方案[J]. 电力科学与技术学报, 2020, 35(3): 135-140. [18] 朱占山, 于生宝, 陈旭, 等. 气隙对电感磁芯内部磁场分布及电感的影响[J]. 磁性材料及器件, 2016, 47(1): 57-60. [19] 旷建军, 阮新波, 任小永. 气隙设计对电感绕组损耗的影响[J]. 电子元件与材料, 2007, 26(10): 60-63. [20] 倪欣荣, 马宏忠, 王东海, 等. 电缆护层电压补偿与护层电流抑制技术[J]. 电力系统自动化, 2007, 31(5): 65-69. |
|
|
|