|
|
Modal and vibration response analysis of power module based on finite element method |
SUN Peiqi, CHEN Hang |
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142 |
|
|
Abstract In order to deal with reliability of the power module in vibration environment, Solidworks software is used to conduct three-dimensional modeling of the power module, and the finite element simulation software is used to conduct modal analysis and harmonic response analysis of the model. On this basis, the effects of different substrate materials and thickness, and that on substrate solder stress and chip solder stress under random vibration are studied. The results show that when the substrate thickness increases from 1.5mm to 5mm, the substrate solder stress and chip solder stress tend to decrease, the successive influence degree of which is Cu substrate, Al substrate, AlSiC substrate stress. The influence of different directed bonding copper (DBC) solder on the stress of substrate solder is Ag3.5Sn96.5, Sn63Pb37, SAC305, and that on the stress of chip solder is Ag3.5Sn96.5, Sn63Pb37, SAC305.
|
Received: 16 March 2023
|
|
|
|
Cite this article: |
SUN Peiqi,CHEN Hang. Modal and vibration response analysis of power module based on finite element method[J]. Electrical Engineering, 2023, 24(5): 30-34.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I5/30
|
[1] 李澤民. IGBT功率模块行业发展趋势与激光锡焊方案[C]//2021中国高端SMT学术会议论文集, 重庆, 2021: 28-37. [2] 蔡蔚, 杨茂通, 刘洋, 等. SiC功率模块封装技术及展望[J]. 汽车工程, 2022, 44(4): 638-647. [3] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J/OL]. 电工技术学报, DOI: 10.19595/j.cnki. 1000-6753.tces.221214. [4] YANG Shaoyong, BRYANT A, MAWBY P, et al.An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Appli- cations, 2011, 47(3): 1441-1451. [5] 史奔, 彭国平. TSVG智能功率模块在新能源领域的应用[J]. 电气技术, 2014, 15(增刊1): 72-74. [6] 蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状[J]. 科技导报, 2021, 39(14): 42-55. [7] 宜紫薇. 热循环与随机振动加载下电路板的寿命预测[J]. 电子元件与材料, 2019, 38(1): 89-96. [8] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250. [9] 陈民铀, 高兵, 杨帆, 等. 基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J]. 电工技术学报, 2015, 30(20): 252-260. [10] 罗哲雄, 周望君, 陆金辉, 等. 双面散热汽车IGBT模块热测试方法研究[J]. 电气技术, 2022, 23(12): 24-30. [11] BARBAGALLO C, MALGIOGLIO G L, PETRONE G, et al.Thermo-mechanical analysis of a multi-chip power module[C]//Proceedings of the Conference on Thermal Energy Systems: Production, Storage, Utiliza- tion and the Environment, Naples, 2015. [12] CHEN Yajuan, YOU Fei.Analysis on thermal-force coupling performance of a vehicle IGBT packaging module[J]. Journal of Physics: Conference Series, 2020, 1570(1): 012034. [13] SAMAVATIAN V, MASOUMIAN A, MAFI M, et al.Influence of directional random vibration on the fatigue life of solder joints in a power module[J]. IEEE Transactions on Components Packaging and Manufa- cturing Technology, 2019, 9(2): 262-268. [14] KATO F, NAKAGAWA H, YAMAGUCHI H, et al.High-temperature transient thermal analysis for SiC power modules[J]. Materials Science Forum, 2016, 858: 1078-1081. [15] GUAN Jiajia, ZHANG Chi, CHEN Cai, et al.Analysis of the influence of vibration and thermal vibration coupling on the power module[C]//2021 IEEE Work- shop on Wide Bandgap Power Devices and Appli- cations in Asia (WiPDA Asia), Wuhan, China, 2022: 23-26. |
|
|
|