|
|
Experimental research on key technologies for energy management system of gigawatt-scale energy storage power station |
XU Mengyang, ZHENG Peng, HE Chun |
Xuchang KETOP Testing Research Institute Co., Ltd, Xuchang, He’nan 461000 |
|
|
Abstract The construction of gigawatt-scale energy storage power station is an important measure to promote the evolution of power system to adapt to large-scale and high proportion of new energy. The energy management system is the key integration part of the energy storage system, and its progressiveness, reliability and scalability directly affect the integration effect and operating income of the energy storage station. In order to study the technology integration route of the future gigawatt-scale energy storage power station, this paper proposes a test and verification system for the energy management system of the gigawatt-scale energy storage power station. Combining data storage, robustness testing, avalanche, closed-loop verification of power grid control and other technologies, a comprehensive test and verification platform is built for the energy management system of the gigawatt-scale energy storage power station. The key indicators such as large-scale access capability, extreme fault handling capability, data storage capability, operation control capability are tested. The results show that the proposed technology can effectively solve the difficulties of system integration verification of the gigawatt-scale energy storage power station, and can provide test support for subsequent engineering applications.
|
Received: 15 May 2023
|
|
|
|
Cite this article: |
XU Mengyang,ZHENG Peng,HE Chun. Experimental research on key technologies for energy management system of gigawatt-scale energy storage power station[J]. Electrical Engineering, 2023, 24(7): 56-63.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I7/56
|
[1] 史林军, 杨帆, 刘英, 等. 计及社会发展的多场景用户侧储能容量优化配置[J]. 电力系统保护与控制, 2021, 49(22): 59-66. [2] 杜锡力, 李笑竹, 陈来军, 等. 面向多场景调节需求的集中式共享储能鲁棒优化配置[J]. 电工技术学报, 2022, 37(23): 5911-5921. [3] 白桦, 王正用, 李晨, 等. 面向电网侧、新能源侧及用户侧的储能容量配置方法研究[J]. 电气技术, 2021, 22(1): 8-13. [4] 肖静, 吴宁, 冯玉斌, 等. 计及需求侧响应的用户侧储能最优运行决策分析[J]. 电气技术, 2021, 22(3): 20-25. [5] 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37(23): 5976-5986. [6] 茹东武, 李天泽, 侯俊飞, 等. 智能变电站测试系统研究与应用[J]. 电工技术, 2016(7): 19-21. [7] LIU Sai, ZHOU Cheng, GUO Haomin, et al.Oper- ational optimization of a building-level integrated energy system considering additional potential benefits of energy storage[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 55-64. [8] Monitoring Analytics.2019 state of the market report for PJM[R]. Pennsylvania: Monitoring Analytics, 2020. [9] 电化学储能电站监控系统技术规范: NB/T 42090— 2016[S] NB/T 42090— 2016[S]. 北京: 新华出版社, 2017. [10] 林丹, 刘前进, 曾广璇, 等. 配电网信息物理系统可靠性的精细化建模与评估[J]. 电力系统自动化, 2021, 45(3): 92-101. [11] 田芳, 李亚楼, 周孝信, 等. 电力系统全数字实时仿真装置[J]. 电网技术, 2008, 32(22): 17-22. [12] 张浩, 徐红燕, 彭道刚, 等. 仿真技术在电力系统中的应用[J]. 系统仿真技术, 2005, 1(2): 109-115. [13] 田芳, 黄彦浩, 史东宇, 等. 电力系统仿真分析技术的发展趋势[J]. 中国电机工程学报, 2014, 34(13): 2151-2163. [14] 刘焕志, 胡剑锋, 李枫, 等. 变电站自动化仿真测试系统的设计和实现[J]. 电力系统自动化, 2012, 36(9): 109-112, 115. [15] 张晓莉, 刘慧海, 李俊庆, 等. 智能变电站继电保护自动测试平台[J]. 电力系统自动化, 2015, 39(18): 91-96. [16] 大型电化学储能电站电池监控数据管理规范: T/CEC 176—2018[S] T/CEC 176—2018[S]. 北京: 中国电力出版社, 2018. [17] 电化学储能电站用锂离子电池管理系统技术规范: GB/T 34131—2017[S] GB/T 34131—2017[S]. 北京: 中国标准出版社, 2017. [18] 杨波, 吴际, 徐珞, 等. 一种软件测试需求建模及测试用例生成方法[J]. 计算机学报, 2014, 37(3): 522-538. [19] 季知祥, 邓春宇. 面向电力大数据应用的专业化分析技术研究[J]. 供用电, 2017, 34(6): 32-37. [20] 史豪杰. 一种实用的不良数据检测与辨识方法[J]. 广东电力, 2017, 30(11): 85-89. [21] 陈锦山, 唐志军, 何燕玲, 等. 智能变电站二次系统信息安全测试方法[J]. 广东电力, 2017, 30(9): 75-80. [22] 胡宝, 张文, 李先彬, 等. 智能变电站嵌入式平台测试系统设计及应用[J]. 电力系统保护与控制, 2017, 45(10): 129-133. [23] 靳雯皓, 刘继春, 刘俊勇. 平抑风电功率波动的新型储能系统控制策略[J]. 电测与仪表, 2018, 55(24): 78-87. [24] 郭红霞, 任智君. 考虑不同投资主体储能运行策略的主动配电网多目标规划[J]. 智慧电力, 2019, 47(11): 22-28, 34. [25] 常志拓, 张雨濛. 用于平抑功率波动的分布式综合能源站储能装置容量计算[J]. 供用电, 2019, 36(2): 67-72. |
|
|
|