|
|
Research on impedance matching of secondary circuit of HVDC transmission lines for travelling wave acquisition |
CHEN Yulin, ZHANG Jie, ZHANG Jianfeng, LI Haitao |
NR Electric Co., Ltd, Nanjing 211106 |
|
|
Abstract Accurate acquisition of traveling wave signals is the foundation of traveling wave fault location (TWFL) for transmission lines, and the impedance mismatch of the secondary circuit of high voltage direct current (HVDC) lines has negative impact on traveling wave acquisition. For this issue, this article investigates the reasons of the impedance mismatch in the secondary circuit, and analyzes the resulted phenomenon of traveling wave refraction and reflection (TWRR), as well as its negative impact on single-ended TWFL. To solve the problem, a method of impedance matching is proposed, which adds a parallel resistor at the head end of the transmission cable. The commonly used transmission cable is measured and simulated to analyze the range of wave impedance change of the transmission cable, and to verify the suppression effect of TWRR by matching resistors. The results show that the proposed impedance matching method can effectively eliminate the phenomenon of TWRR on secondary circuit, thus improve the reliability of single-ended TWFL, and has good engineering adaptability.
|
Received: 19 May 2023
|
|
|
|
Cite this article: |
CHEN Yulin,ZHANG Jie,ZHANG Jianfeng等. Research on impedance matching of secondary circuit of HVDC transmission lines for travelling wave acquisition[J]. Electrical Engineering, 2023, 24(8): 50-55.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I8/50
|
[1] 杨林, 王宾, 董新洲. 高压直流输电线路故障测距研究综述[J]. 电力系统自动化, 2018, 42(8): 185-191. [2] 董新洲. 故障行波理论及其应用[M]. 北京: 科学出版社, 2022. [3] 崔本丽, 兰生. 基于行波法的HVDC输电线路故障测距综述[J]. 电气技术, 2017, 18(10): 1-4, 12. [4] 覃剑, 葛维春, 邱金辉, 等. 输电线路单端行波测距法和双端行波测距法的对比[J]. 电力系统自动化, 2006, 30(6): 92-95. [5] 刘永浩. 考虑行波色散效应的高压直流输电线路故障定位研究[D]. 广州: 华南理工大学, 2012. [6] 覃剑, 陈祥训, 郑健超. 行波在输电线上传播的色散研究[J]. 中国电机工程学报, 1999, 19(9): 27-30, 35. [7] 覃剑, 陈祥训, 郑健超, 等. 利用小波变换的双端行波测距新方法[J]. 中国电机工程学报, 2000, 20(8): 6-10. [8] 夏璐璐, 何正友, 李小鹏, 等. 基于行波固有频率和经验模态分解的混合线路故障测距方法[J]. 电力系统自动化, 2010, 34(18): 67-73. [9] 邬林勇, 何正友, 钱清泉. 一种提取行波自然频率的单端故障测距方法[J]. 中国电机工程学报, 2008, 28(10): 69-75. [10] 张广斌, 束洪春, 于继来. 基于Hough变换直线检测的行波波头标定[J]. 中国电机工程学报, 2013, 33(19): 165-173, 6. [11] 张广斌, 王开福, 束洪春, 等. 基于波形群灵敏角特征的输电线路故障单端行波辨识与测距[J/OL]. 中国电机工程学报, http://kns.cnki.net/kcms/detail/11.2107.TM.20230425.1453.003.html. [12] 陈玉林, 张杰, 黄涛, 等. 高压直流输电线路行波色散及行波测距研究[J]. 电气技术, 2021, 22(12): 8-13. [13] 曾祥君, 尹项根, 林福昌, 等. 基于行波传感器的输电线路故障定位方法研究[J]. 中国电机工程学报, 2002, 22(6): 42-46. [14] 曾祥君, 刘正谊, 屈明志, 等. 互感器暂态行波传输特性仿真分析与实验测试[J]. 长沙理工大学学报(自然科学版), 2004, 1(1): 71-75. [15] 许飞, 董新洲. 变电站二次回路电流行波传变特性[J]. 清华大学学报(自然科学版), 2015, 55(2): 251-256. [16] 王会广. 变电站二次电缆宽频网络参数提取与暂态计算[D]. 北京: 华北电力大学, 2011. [17] 塑料绝缘控制电缆: GB/T 9330—2020[S]. 北京: 中国标准出版社, 2020. |
|
|
|