|
|
Research on the configuration of passive anti-islanding protection in active distribution network |
JIANG Miao, YAN Wei, XU Guangfu, HUA Xiujuan, HUANG Tao |
NR Electric Co., Ltd, Nanjing 211102 |
|
|
Abstract With a large number of distributed generations injecting into the distribution network, anti-islanding protection should be installed, whose dead zone and coordination with other secondary functions needs to be further analyzed and studied. According to the evaluation formula of frequency and voltage deviation after islanding, the frequency dead zone of anti-islanding protection is strongly related to reactive power shortage and load quality factor, and the voltage dead zone is strongly related to active power shortage. It is necessary to evaluate the dead zone under the condition of minimum shortage and maximum load quality factor. The islanding operation caused by fault may lead to malfunction of anti-islanding protection in case of serious faults such as interphase short circuit and breakage. The anti-islanding protection time needs to avoid the fault duration. In addition, the anti-islanding protection time shall be less than the setting time of the upper transformer gap protection, reverse power protection, non-inspection mode reclose and standby automatic switching, local feeder automation, and greater than the fault crossing setting time. According to the configuration scheme given by this article, the setting analysis of the anti-islanding protection time is carried out according to the 2.0s configuration. If there exists photovoltaic with high permeability, it will lead to the malfunction of the upper transformer gap protection, and it is recommended to add protection and circuit breaker at the end of the upper line in this case.
|
Received: 08 May 2023
|
|
|
|
Cite this article: |
JIANG Miao,YAN Wei,XU Guangfu等. Research on the configuration of passive anti-islanding protection in active distribution network[J]. Electrical Engineering, 2023, 24(9): 34-39.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I9/34
|
[1] 杨浩, 张保会, 宋云亭, 等. 解列后孤岛频率电压相互作用仿真及机理探讨[J]. 电网技术, 2013, 37(12): 3503-3508. [2] 毕天姝, 刘素梅, 薛安成, 等. 逆变型新能源电源故障暂态特性分析[J]. 中国电机工程学报, 2013, 33(13): 165-171. [3] 光伏并网逆变器技术规范: NB/T 32004—2018[S] NB/T 32004—2018[S]. 北京: 中国电力出版社, 2018. [4] 光伏发电并网逆变器技术要求: GB/T 37408—2019[S] GB/T 37408—2019[S]. 北京: 中国标准出版社, 2019. [5] 吴盛军, 徐青山, 袁晓冬, 等. 光伏防孤岛保护检测标准及试验影响因素分析[J]. 电网技术, 2015, 39(4): 924-931. [6] 伞国成, 赵清林, 郭小强, 等. 光伏并网逆变器的间歇性频率扰动正反馈孤岛检测方法[J]. 电网技术, 2009, 33(11): 83-86. [7] ZEINELDIN H H, SAIF A, SALAMA M M A, et al. Three-dimensional non-detection zone for assessing anti-islanding detection schemes[J]. Electric Power Components and Systems, 2010, 38(6): 621-636. [8] YE Zhihong, KOLWALKAR A, ZHANG Yu, et al.Evaluation of anti-islanding schemes based on nondetection zone concept[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1171-1176. [9] 姜淼, 徐光福, 李正红, 等. 含逆变型分布式电源配电网的接地故障中性点电压分析及对策[J]. 电力建设, 2018, 39(5): 70-76. [10] SAMUI A, SAMANTARAY S R.Assessment of ROCPAD relay for islanding detection in distributed generation[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 391-398. [11] 李彦宾, 贾科, 毕天姝, 等. 电流差动保护在逆变型新能源场站送出线路中的适应性分析[J]. 电力系统自动化, 2017, 41(12): 100-105. [12] 黄飞, 陈纪宇, 戴健, 等. 基于特征暂态零模电流偏态系数的有源配电网单相故障定位方法[J]. 电力系统保护与控制, 2022, 50(20): 12-21. [13] 秦苏亚, 薛永端, 刘砾钲, 等. 有源配电网小电流接地故障暂态特征及其影响分析[J]. 电工技术学报, 2022, 37(3): 655-666. [14] JIANG Miao, SHI Yong, XU Guangfu, et al.Analysis of IIDG impact on single-phase-to-ground fault detection[C]//2022 China International Conference on Electricity Distribution (CICED), Changsha, China, 2022: 1130-1136. [15] 曹斌, 代文良, 黎志, 等. 电网侧储能电站防孤岛保护的整定研究[J]. 湖南电力, 2019, 39(5): 9-12. [16] 时珉, 郭捷, 王晓蔚, 等. 光伏电站防孤岛保护装置功能分析及整定原则[J]. 河北电力技术, 2018, 37(3): 1-4. [17] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. [18] 周京华, 刘劲东, 陈亚爱, 等. 大功率光伏逆变器的低电压穿越控制[J]. 电网技术, 2013, 37(7): 1799-1807. [19] 徐东坡, 代永恒, 姬成群, 等. 基于RTDS的光伏逆变器接入薄弱电网仿真测试及研究[J]. 电气技术, 2022, 23(3): 82-86. [20] 杜磊, 赵涛, 冯之健, 等. 单相短路故障条件下级联模块中压光伏发电系统的有功功率回流抑制[J]. 电工技术学报, 2022, 37(20): 5201-5213. |
|
|
|