|
|
Intelligent early warning method of online monitoring system based on cosine similarity |
ZHANG Junjun |
Guodian Nanjing Automation Co., Ltd, Nanjing 211106 |
|
|
Abstract When there is equipment alarms in the online monitoring system of power plants, there is equipment failure. An intelligent early warning method of power equipment based on cosine similarity is proposed to address this problem. Based on the equipment monitoring data provided by the remote diagnosis platform of the power plant, the cosine similarity is used to calculate the correlation between the equipment measurement point data according to the equipment characteristic parameters, and the state matrix is obtained. Then the early warning model for the specific equipment measurement point data is constructed to realize the early warning of the equipment. The engineering application case shows that the method proposed to this paper can carry out equipment early warning in advance, reduce the occurrence of power plant equipment fault, and improve the work efficiency of patrol inspectors.
|
Received: 07 July 2023
|
|
|
|
Cite this article: |
ZHANG Junjun. Intelligent early warning method of online monitoring system based on cosine similarity[J]. Electrical Engineering, 2023, 24(9): 65-70.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I9/65
|
[1] 周江建, 刘宇晨. 烟草车间传送设备齿轮磨损智能预警方法研究[J]. 机械制造与自动化, 2022, 51(3): 244-247. [2] 赵云龙, 傅文进, 李沛. 基于大数据的配电网运行风险智能预警方法[J]. 自动化应用, 2022(1): 116-118, 122. [3] 马乐, 张韬, 王睿, 等. 智能预警视频监控在油田生产中的应用[J]. 中国管理信息化, 2021, 24(5): 83-84. [4] 杜厚贤, 刘昊, 雷龙武, 等. 基于振动信号多特征值的电力变压器故障检测研究[J]. 电工技术学报, 2023, 38(1): 83-94. [5] 余颖, 刘亚东,李维, 等. 配电线路针式绝缘子早期故障动态特性研究[J]. 电工技术学报, 2023, 38(1): 71-82. [6] 赵耀, 陆佳煜, 李东东, 等. 基于机电信号融合的电励磁双凸极电机绕组匝间短路故障诊断[J]. 电工技术学报, 2023, 38(1): 204-219. [7] HE Kaixun, WANG Tao, ZHANG Fangkun, et al.Anomaly detection and early warning via a novel multiblock-based method with applications to thermal power plants[J]. Measurement, 2022, 193: 110979. [8] XIE Jinglong, XIAO Xinxiu, XU Yao, et al.An IoT assisted early warning system for smart grid[J]. Journal of Physics: Conference Series, 2022, 2218(1): 012027. [9] 朱明增, 李旭横, 刘小兰, 等. 电网调控一体化运行电力设备危险点智能预警[J]. 自动化与仪器仪表, 2020(11): 206-209, 215. [10] 孙方楠, 梁后健, 袁瑜, 等. 基于可视化技术的电网智能调度预警系统构建[J]. 自动化与仪器仪表, 2018(5): 127-130. [11] 任晓辉. 电网调控自动化系统运行状态在线监视与智能诊断研究及应用[J]. 电力系统保护与控制, 2018, 46(11): 156-161. [12] 贡文明. 基于智能算法的发电设备远程故障预警系统分析[J]. 中国设备工程, 2022(11): 138-140. [13] 佘兢克, 施天姿, 唐钰淇, 等. 核电站失水事故的智能预警及仿真方法研究[J]. 仪器仪表用户, 2021, 28(12): 35-40. [14] 安东, 李峰, 陈炜, 等. 智能接地监测预警系统在水电站和风电场的应用[J]. 四川水力发电, 2017, 36(4): 116-119. [15] HAO Guo, WANG Zhigang, MAO Dun, et al.Research on safety monitoring and early warning technology of intelligent auxiliary live working[C]// 2nd International Conference on Mechanical, Elec- tronics, and Electrical and Automation Control (METMS 2022), Guilin, China, 2022. [16] KHALAJ F, KHALAJ M.Developed cosine similarity measure on belief function theory: an application in medical diagnosis[J]. Communications in Statistics- Theory and Methods, 2022, 51(9): 2858-2869. [17] FRANCESCHINI R, ROSI A, CATANI F, et al.Exploring a landslide inventory created by automated web data mining: the case of Italy[J]. Landslides, 2022, 19(4): 841-853. [18] 韩璐. 变电站一次设备在线监测数据诊断及运维检修分析[J]. 电力系统装备, 2019(20): 91-92. [19] 张军军, 陈果, 卢应强, 等. 风电场主设备预警诊断系统设计与开发[J]. 电气技术, 2023, 24(5): 52-57. [20] 卢明, 伍川, 盛从兵, 等. 复合绝缘子酥朽断裂及内击穿故障的关联性分析[J]. 电瓷避雷器, 2022(1): 157-164. [21] 安贵元, 高辉, 杨雪梅, 等. 在线监测在高压电气设备工况分析中的典型应用[J]. 电气技术, 2014, 15(8): 68-69. [22] 郑慧娟, 黄海军. 水电厂生产运行智能预警模型设计思想[C]//中国水力发电工程学会自动化专委会2021年年会暨全国水电厂智能化应用学术交流会论文集, 南京, 2021: 318-321. [23] 王非, 马雁, 刘黎明. 基于大数据分析的燃气—蒸汽联合循环机组远程诊断平台及其应用[J]. 电力与能源, 2018, 3(5): 693-694, 697. |
|
|
|