|
|
Analysis of cracking and leakage of reactor oil storage tank joint pipe in a 1 000kV ultra-high voltage substation |
DANG Le1, DONG Junqian1, CUI Yaru1, ZHANG Wei1, HAO Jianguo2 |
1. Electric Power Research Institute of State Grid Inner Mongolia Eastern Electric Power Co., Ltd, Hohhot 010000; 2. Inner Mongolia Ultra High Voltage Branch of State Grid Inner Mongolia Eastern Electric Power Co., Ltd, Xilingol, Inner Mongolia 026000 |
|
|
Abstract This paper analyzes the failure of a 1 000kV reactor joint pipe cracking in the eastern region of Inner Mongolia. For identifying the causes of the cracking of the joint pipe and understanding the health status of the pipe material, a comprehensive experimental analysis is conducted on the cracked joint pipe using methods such as appearance morphology analysis, fracture analysis, digital radiography (DR) fluoroscopy detection, chemical composition analysis, metallographic microstructure detection, mechanical property detection, and strength verification calculation. The results indicated that the cracking occurres at the weld toes on both sides of the branch pipe fillet weld connected to the high- pressure measuring device on the joint pipe. The thickness deviation of the pipe wall is significant, and there are welding defects such as slag inclusion, porosity and incomplete penetration in the branch pipe fillet weld to varying degrees. The fracture of the cracked branch pipe starts from the outer wall, and most of the area on the fracture surface is an extension zone. Macroscopically, beach shaped fatigue striations can be observed in the extension zone, while microscopically, obvious fatigue bands can be observed, indicating a typical fatigue fracture. There are obvious fully decarburized layer defects on both the inner and outer surfaces of the pipe, which reduces the fatigue strength of the pipes.
|
Received: 30 August 2023
|
|
|
|
Cite this article: |
DANG Le,DONG Junqian,CUI Yaru等. Analysis of cracking and leakage of reactor oil storage tank joint pipe in a 1 000kV ultra-high voltage substation[J]. Electrical Engineering, 2023, 24(11): 48-53.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I11/48
|
[1] 孟令, 吴维国, 胡成城, 等. 一种万能绝缘子更换卡具的研制与分析[J]. 电气技术, 2023, 24(4): 52-56. [2] 王相锋, 陈习文, 任宝林, 等. 一起套管密封缺陷导致的主变跳闸事故分析[J]. 电气技术, 2023, 24(5): 82-86. [3] 李晓鹏, 田平, 桂景海. 给水泵汽轮机进汽管道开裂泄漏的分析与处理[J]. 冶金动力, 2022, 41(4): 65-67, 71. [4] 周帅, 林磊, 梁帆, 等. 核电厂疏水管道焊缝开裂根本原因分析和治理建议[J]. 中国核电, 2022, 15(3): 376-382, 392. [5] 李显鹏, 毛海波, 程兴民, 等. 某1 000kV高抗套管压力异常的分析和处理[J]. 电工电气, 2018(2): 71-72. [6] 袁守谦, 姚成功, 陈列, 等. 中碳钢连铸方坯内部角裂机制研究与优化[J]. 钢铁研究学报, 2012, 24(3): 53-57. [7] 郑东宏, 陈孝海, 李加华, 等. 核电厂镍基焊缝应力腐蚀开裂返修技术分析[J]. 发电设备, 2023, 37(4): 243-247, 252. [8] 冯柳, 彭庆梁. 扫描电镜在金属材料检测中的应用[J]. 世界有色金属, 2020(16): 208-209. [9] SALIMI H, POURGOL-MOHAMMAD M, YAZDANI M.Metal fatigue assessment based on temperature evolution and thermodynamic entropy generation[J]. International Journal of Fatigue, 2019, 127: 403-416. [10] SHANYAVSKY A A.Scales of metal fatigue cracking[J]. Physical Mesomechanics, 2015, 18(2): 163-173. [11] 刘涛, 尹志强, 雷经发, 等. 金属疲劳损伤过程中表面形貌的多分辨特征提取[J]. 激光与光电子学进展, 2022, 59(8): 444-453. [12] 高志. 新技术下金属材料成分分析技术发展前景[J]. 中国金属通报, 2021(9): 1-2. [13] 何东欣, 魏君宇, 王婉君, 等. 界面缺陷及老化状态下电力电子器件封装绝缘应力波检测与分析[J]. 电工技术学报, 2023, 38(3): 610-621. [14] 赵小军, 张凌云, 刘洋, 等. 机械应力对取向硅钢片综合磁性能影响的实验研究[J]. 电工技术学报, 2022, 37(22): 5776-5787. [15] NOWAK C M, OTHMAN A, STRÖBELE D A, et al. Comparative mechanical testing for different ortho- dontic aligner materials over time-in vitro study[J]. Journal of Clinical and Experimental Dentistry, 2022, 14(6): e457-e463. [16] 郝雪龙, 禄璐, 张东晖, 等. 异种金属焊接构件腐蚀疲劳性能研究[J]. 大型铸锻件, 2022(6): 79-82. [17] 金世贵. 硬度测定在壁厚强度校核中的应用[J]. 化学工程与装备, 2017(7): 58-59. |
|
|
|