|
|
Art fault detection method based on variational mode decomposition energy entropy hybrid time domain feature and random forest |
DONG Zhiwen1,2, SU Jingjing1,3 |
1. College of Computer and Control Engineering, Minjiang University, Fuzhou 350118; 2. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350108; 3. Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd, Hangzhou 310051 |
|
|
Abstract In household appliances, nonlinear load devices continue to grow, which makes the limitations of traditional fault current detection methods based on "zero crossing" characteristics become evident. This paper introduces a novel approach for fault arc identification, combining signal time domain features with variational mode decomposition (VMD) intrinsic modal energy entropy. The analysis focuses on line current, initially extracting time-frequency features. Subsequently, the VMD algorithm decomposes the fault arc current into intrinsic mode function (IMF), and their energy entropy is computed. By leveraging both time-domain and energy entropy features, a multidimensional feature vector is employed for fault arc identification within a random forest model. Comparative experiments indicate that this method achieves an impressive fault arc identification accuracy of up to 99% and is suitable for diverse low-voltage distribution scenarios including various load types and nonlinear loads.
|
Received: 31 October 2023
|
|
|
|
Cite this article: |
DONG Zhiwen,SU Jingjing. Art fault detection method based on variational mode decomposition energy entropy hybrid time domain feature and random forest[J]. Electrical Engineering, 2024, 25(1): 1-7.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I1/1
|
[1] 王星尹, 叶益昌, 宋遥, 等. 电气防火安全的研究[J]. 自动化应用, 2023, 64(14): 251-253. [2] 肖方. 近10年全国发生居住场所火灾132.4万起造成11634人遇难6738人受伤直接财产损失77.7亿元[J]. 中国消防, 2022(2): 10-11. [3] 赵杰, 董继民, 张延平. 基于多种电气增量融合判据的电弧故障诊断方法[J]. 电气技术, 2022, 23(2): 79-87. [4] 刘冲, 李佳鸿. 基于小波变换与差值能量法相结合的串联故障电弧检测方法[J]. 电气技术, 2017, 18(12): 62-66. [5] 龙禹, 周扬, 石晓龙, 等. 交流供电系统故障电弧隐患检测方法研究综述[J]. 电力需求侧管理, 2023, 25(3): 74-79. [6] 金翠, 刘洋, 李琦, 等. 基于CatBoost的常用电器负载电弧故障识别方法[J]. 电测与仪表, 2023, 60(7): 193-200. [7] 宿磊, 沈煜, 杨帆, 等. 融合CEEMDAN分解与敏感IMF精选的串联电弧故障检测[J]. 电子测量与仪器学报, 2022, 36(10): 173-180. [8] 杨洋, 黄罗杰, 李平, 等. 基于多维度特征提取的电弧故障检测方法[J]. 电子测量与仪器学报, 2021, 35(10): 107-115. [9] 方愉冬, 郑燃, 徐峰, 等. 基于集成决策树的电力系统继电保护故障检测[J]. 高电压技术, 2023,49(增刊1): 160-164. [10] 左思雨, 赵强, 张冰, 等. 基于VMD-SSA-GRU的船舶运动姿态预测[J]. 舰船科学技术, 2022, 44(23): 60-65, 69. [11] 夏志凌, 胡凯波, 刘心悦, 等. 基于变模态分解的异步电机转子断条故障诊断[J]. 电工技术学报, 2023, 38(8): 2048-2059. [12] 崔芮华, 张振, 佟德栓, 等. 基于改进经验小波变换多特征融合的航空交流串联电弧故障检测[J]. 电工技术学报, 2022, 37(12): 3148-3161. [13] 何志鹏, 李伟林, 邓云坤, 等. 低压交流串联故障电弧辨识方法[J]. 电工技术学报, 2023, 38(10): 2806-2817. [14] 郑熙东, 江修波. 基于完备经验模态分解与能量熵的混合储能系统功率分配[J]. 电气技术, 2020, 21(11): 61-65, 70. |
|
|
|