|
|
Infrared overheating defect detection method for power equipment based on improved YOLOv7 |
LIN Lixia, WU Yueyuan |
Zhanjiang Power Supply Bureau of Guangdong Power Grid Co., Ltd, Zhanjiang, Guangdong 524000 |
|
|
Abstract Overheating defects in power equipment during operation can easily cause electrical faults, posing a serious threat to the safe operation of power equipment. In order to effectively monitor the operation status of power equipment, a method for detecting infrared overheating defects in power equipment based on improved you only look once v7 (YOLOv7) is proposed. YOLOv7 object detection network is used as the basic detection network, and the loss of rectangular boxes is measured by using complete intersection over union (CIoU). At the same time, the spatial pyramid pooling-cross-stage partial channel (SPPCSPC) structure is replaced by the spatial pyramid pooling-fast-cross-stage partial channel (SPPFCSPC) structure of the original network to improve the model, while increasing the receptive field of the model and improving the overheating defects detection performance. The experimental results show that the precision rate of this method based on improved YOLOv7 reaches 90.39%, the recall rate reaches 78.95%, and the average precision value reaches 89.64%, which can provide technical reference for infrared detection of overheating defects in power equipment.
|
Received: 30 August 2023
|
|
|
|
Cite this article: |
LIN Lixia,WU Yueyuan. Infrared overheating defect detection method for power equipment based on improved YOLOv7[J]. Electrical Engineering, 2024, 25(1): 42-47.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I1/42
|
[1] 律方成, 牛雷雷, 王胜辉, 等. 基于优化YOLOv4的主要电气设备智能检测及调参策略[J]. 电工技术学报, 2021, 36(22): 4837-4848. [2] 叶剑涛, 杨为, 柯艳国, 等. 基于红外图像实例分割的敞开式开关设备发热缺陷智能诊断方法[J]. 高压电器, 2021, 57(12): 201-208. [3] 陈同凡, 刘云鹏, 裴少通. 基于改进YOLOv3的电力设备红外诊断方法[J]. 广东电力, 2021, 34(6): 21-29. [4] 刘建月, 张志东. 一起避雷器爆炸事故分析[J]. 电气技术, 2023, 24(7): 73-76. [5] 臧国强, 刘晓莉, 徐颖菲, 等. 深度学习在电力设备缺陷识别中的应用进展[J]. 电气技术, 2022, 23(6): 1-7. [6] 王有元, 李后英, 梁玄鸿, 等. 基于红外图像的变电设备热缺陷自调整残差网络诊断模型[J]. 高电压技术, 2020, 46(9): 3000-3007. [7] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(增刊1): 302-310. [8] 张雨明. 基于深度学习的电力设备红外图像异常检测研究[D]. 西安: 西安建筑科技大学, 2022. [9] 李文璞, 毛颖科, 廖逍, 等. 基于旋转目标检测的变电设备红外图像电压致热型缺陷智能诊断方法[J].高电压技术, 2021, 47(9): 3246-3253. [10] 托娅, 王伟, 毛华敏, 等. 基于机器学习的电力设备故障红外智能诊断方法[J]. 河南理工大学学报(自然科学版), 2022, 41(5): 121-126. [11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M, et al. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 7464-7475. |
|
|
|