|
|
Detection of false data injection attacks in power grid based on Res-CNN-LSTM with channel fusion |
FANG Zhenggang |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract The number of network attacks targeting the power system is increasing, and information physical security issues have attracted high attention from power companies and academia. In order to accurately detect false data injection attacks in the power grid, a one-dimensional convolutional neural network (1DCNN) based on residual neural network (ResNet) structure, and long short-term memory (LSTM) network based multi-channel fusion network model which called Res- CNN-LSTM is proposed. This algorithm utilizes the efficient extraction ability of 1DCNN and LSTM in time series information, and fuses the extracted information in different channels to further enhance the extraction effect of data features. At the same time, the main body of the model adopts a residual jump connection structure to solve the problem of overfitting in the training process of the neural network. Simulation is conducted based on IEEE-14 and IEEE-118 node testing systems, and the proposed method is compared with other neural network model algorithms. The results verified the effectiveness and accuracy of the proposed method in the paper.
|
Received: 17 November 2023
|
|
|
|
Cite this article: |
FANG Zhenggang. Detection of false data injection attacks in power grid based on Res-CNN-LSTM with channel fusion[J]. Electrical Engineering, 2024, 25(3): 11-17.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I3/11
|
[1] 杨杉, 谭博, 郭静波. 基于双马尔科夫链的新型能源互联网虚假数据注入攻击检测[J]. 电力自动化设备, 2021, 41(2): 131-137. [2] 王琦, 邰伟, 汤奕, 等. 面向电力信息物理系统的虚假数据注入攻击研究综述[J]. 自动化学报, 2019, 45(1): 72-83. [3] 曹禹. 智能电网中虚假数据注入攻击检测与辨识研究[D]. 南京: 南京邮电大学, 2022. [4] 陈刘东, 刘念. 面向互动需求响应的虚假数据注入攻击及其检测方法[J]. 电力系统自动化, 2021, 45(3): 15-23. [5] 田猛, 王先培, 董政呈, 等. 基于拉格朗日乘子法的虚假数据攻击策略[J]. 电力系统自动化, 2017, 41(11): 26-32. [6] 张明月, 王新宇. 基于残差观测器的智能电网虚假数据攻击检测研究[J]. 电气工程学报, 2023, 18(1): 111-117. [7] 鲁俊良. 基于机器学习的智能电网虚假数据攻击检测研究[D]. 北京: 华北电力大学, 2019. [8] 刘鑫蕊, 常鹏, 孙秋野. 基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J]. 中国电机工程学报, 2021, 41(16): 5462-5476. [9] OZAY M, ESNAOLA I, VURAL F T Y, et al. Machine learning methods for attack detection in the smart grid[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1773-1786. [10] YU J J Q, HOU Yunhe, LI V O K. Online false data injection attack detection with wavelet transform and deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3271-3280. [11] 陈冰, 唐永旺. 基于Transformer编码器的智能电网虚假数据注入攻击检测[J]. 计算机应用与软件, 2022, 39(7): 336-342. [12] 黄冬梅, 何立昂, 孙锦中, 等. 基于边缘计算的电网假数据攻击分布式检测方法[J]. 电力系统保护与控制, 2021, 49(13): 1-9. [13] 涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法[J]. 电气技术, 2022, 23(2): 48-54. [14] 韦先灿, 高伟, 杨耿杰. 基于改进动态线损估计的智能电表误差估计方法[J]. 电气技术, 2022, 23(2): 7-12. [15] 李扬, 李智, 陈亮, 等. 发电机动态状态估计中的一种虚假数据注入攻击方法[J]. 电工技术学报, 2020, 35(7): 1476-1488. [16] 王菲菲, 阮爱民, 魏刚, 等. 基于卷积神经网络的开关柜局部放电故障识别[J]. 电气技术, 2019, 20(4): 76-81. [17] 李元诚, 曾婧. 基于改进卷积神经网络的电网假数据注入攻击检测方法[J]. 电力系统自动化, 2019, 43(20): 97-104. [18] 金亮, 冯裕霖, 曹佳豪, 等. 基于注意力与长短期记忆网络的变压器代理模型[J]. 电气技术, 2021, 22(7): 65-71, 77. [19] 唐清苇, 向月, 代佳琨, 等. 基于CNN-LSTM的风电场发电功率迁移预测方法[J]. 工程科学与技术, 2024, 56(2): 91-99. |
|
|
|