|
|
Dynamic reactive power optimization of photovoltaic distribution network based on improved gray wolf optimization algorithm |
YU Huijun, MA Fanshuo, CHEN Gang, YANG Chize, LI Jiaxuan |
College of Electrical and Information Engineering, Hu’nan University of Technology, Zhuzhou, Hu’nan 412007 |
|
|
Abstract In view of the problems caused by photovoltaic grid connection to the distribution network, such as voltage fluctuations, increased line losses, and uncertainty in photovoltaic and load output, this paper constructs a linear convex optimization model based on second-order cone programming. By controlling the on-load voltage regulating transformer and the capacitor bank action, photovoltaic inverter and static var generator reactive power compensation capacity constraints are dynamically analyzed on the day-ahead and intra-day dual time scale reactive power optimization model, which simplifies the solution process and increases the possibility of finding the global optimum. An improved gray wolf algorithm based on chaotic learning initialization, nonlinear convergence factor, optimal particle Cauchy perturbation and spider monkey algorithm position update method is proposed to prevent falling into local optima and enhance global search capabilities. Finally, the algorithm is used to model and simulate the IEEE 33 node system containing photo-voltaic. The results show that the algorithm has the advantages of high optimization efficiency and fast con-vergence speed. The feasibility and effect of the proposed algorithm are confirmed.
|
Received: 11 December 2023
|
|
|
|
Cite this article: |
YU Huijun,MA Fanshuo,CHEN Gang等. Dynamic reactive power optimization of photovoltaic distribution network based on improved gray wolf optimization algorithm[J]. Electrical Engineering, 2024, 25(4): 7-15.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I4/7
|
[1] 丁俊, 王欣怡, 邵烨楠, 等. 新型电力系统的影响因素分析[J]. 电气技术, 2022, 23(7): 42-45. [2] 李桐, 韩学山. 时变追踪并网光伏电站最大输出功率的无功优化方法[J]. 电工技术学报, 2023, 38(11): 2921-2931. [3] 黄伟达, 李天友, 黄超艺. 计及分布式光伏的农村配电台区断零故障分析[J]. 电气技术, 2022, 23(2): 31-35. [4] 张健, 王凯悦. 考虑电压稳定性的含分布式电源配电网多目标无功优化[J]. 电气技术, 2020, 21(3): 64-69. [5] 王果, 武旭, 李龙, 等. 光伏多功能并网逆变器不同出力状态下无功和谐波优化方法[J]. 电力自动化设备, 2024, 44(1): 80-87. [6] 黄大为, 王孝泉, 于娜, 等. 计及光伏出力不确定性的配电网混合时间尺度无功/电压控制策略[J]. 电工技术学报, 2022, 37(17): 4377-4389. [7] 刘兆元, 王萍, 郑能, 等. 考虑可控光伏系统的配电网有功-无功协调优化[J]. 电网技术, 2019, 43(1): 294-301. [8] 黄伟, 刘斯亮, 王武, 等. 长时间尺度下计及光伏不确定性的配电网无功优化调度[J]. 电力系统自动化, 2018, 42(5): 154-162. [9] CHAI Qingmian, ZHANG Cuo, XU Yan, et al.PV inverter reliability-constrained volt/var control of distribution networks[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1788-1800. [10] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303. [11] AI Yongle, DU Mingzhu, PAN Zhihang, et al.The optimization of reactive power for distribution network with PV generation based on NSGA-III[J]. CPSS Transactions on Power Electronics and Applications, 2021, 6(3): 193-200. [12] XIE Yigong, ZHAI Suwei, LI Wenyun, et al.Activereactive power coordinated optimization of distribution network with photovoltaic based on PSO-CSA algorithm[C]//2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022: 313-318. [13] 罗荇子, 汪沨, 谭阳红, 等. 改进小生境蝙蝠算法在无功优化中的应用[J]. 电力系统及其自动化学报, 2017, 29(10): 35-39, 51. [14] 高锋阳, 乔垚, 杜强, 等. 考虑光伏出力相关性的配电网动态无功优化[J]. 太阳能学报, 2018, 39(1): 101-109. [15] 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38. [16] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213. [17] 夏正龙, 陆良帅, 吴启凡, 等. 改进灰狼算法在含风电的配电网无功优化中的应用[J]. 智慧电力, 2023, 51(6): 63-70. [18] 刘语忱, 闫群民, 郭阳, 等. 基于完备局部均值分解和相关分析的光伏发电侧电-氢混合储能优化配置[J]. 电气技术, 2022, 23(11): 21-29. [19] 郭清元, 吴杰康, 莫超, 等. 基于混合整数二阶锥规划的新能源配电网电压无功协同优化模型[J]. 中国电机工程学报, 2018, 38(5): 1385-1396. |
|
|
|