|
|
Online ice melting technology for ultra high voltage direct current system and its engineering application |
FU Guangxu, LU Dongbin, ZHANG Jing, XUE Haiping, ZOU Feng |
NR Electric Co., Ltd, Nanjing 211102 |
|
|
Abstract The Yahu DC line spans several areas prone to icing disasters, which can easily lead to line icing and affect the stability of DC transmission. In order to solve these issues, the ultra-high voltage direct current ice melting function has been studied and designed. Firstly, a systematic analysis is conducted on the configuration of the isolation switch for the main wiring of the ice melting system, to avoid manual wiring operations by operation and maintenance personnel. Secondly, the sequence control and interlocking logic of the ice melting isolation switch is designed to ensure the safety and fast operation mode switching for the operation and maintenance personnel. Once again, the basic control strategy of ice melting and online ice melting technology are introduced to ensure uninterrupted power transmission when transitioning from conventional operation to ice melting operation. Finally, the special functions for ice melting configuration are produced to reduce the impact of abnormal ice melting operation on the system. The effectiveness of online ice melting technology are verified through real-time digital simulation experiments, and it successfully passes on-site deblocking, power lifting, and blocking tests one time. The research and design of ice melting function can improve the transmission reliability of Yahu DC line in ice and snow disaster weather.
|
Received: 24 December 2023
|
|
|
|
Cite this article: |
FU Guangxu,LU Dongbin,ZHANG Jing等. Online ice melting technology for ultra high voltage direct current system and its engineering application[J]. Electrical Engineering, 2024, 25(4): 77-84.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I4/77
|
[1] 李正, 杨靖波, 韩军科, 等. 2008年输电线路冰灾倒塔原因分析[J]. 电网技术, 2009, 33(2): 31-35. [2] 陆佳政, 蒋正龙, 雷红才, 等. 湖南电网2008年冰灾事故分析[J]. 电力系统自动化, 2008, 32(11): 16-19. [3] 李庆峰, 范峥, 吴穹, 等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术, 2008, 32(9): 33-36. [4] 彭向阳, 周华敏, 潘春平. 2008年广东电网输电线路冰灾受损情况及关键影响因素分析[J]. 电网技术, 2009, 33(9): 108-112. [5] 黄亚飞, 蒋兴良, 任晓东, 等. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J]. 电工技术学报, 2021, 36(10): 2169-2177. [6] 韩兴波, 吴海涛, 郭思华, 等. 用于覆冰环境测量的旋转多导体直径选择方法研究[J]. 电工技术学报, 2022, 37(15): 3973-3980. [7] 杨国林, 蒋兴良, 王茂政, 等. 输电线路单导线覆冰形状对直流大电流融冰时间的影响[J/OL]. 电工技术学报, 1-10 [2024-02-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.230088. [8] 韩兴波, 吴海涛, 郭思华, 等. 输电线路单导线覆冰和扭转的相互影响机制分析[J]. 电工技术学报, 2022, 37(17): 4508-4516. [9] 潘国洪. 集装箱式大容量直流融冰装置的设计及过热分析[J]. 电气技术, 2022, 23(11): 88-91, 98. [10] 山霞, 舒乃秋. 关于架空输电线除冰措施的研究[J]. 高电压技术, 2006, 32(4): 25-27. [11] 班国邦, 牛唯, 杨文勇, 等. 基于模块化多电平换流器的直流融冰装置馈线潮流控制仿真[J]. 电气技术, 2021, 22(9): 27-33. [12] 张涵. 特高压换流站交、直流线路融冰装置同场布设运行策略研究[J]. 电气技术, 2020, 21(9): 49-53, 65. [13] 常浩, 石岩, 殷威扬, 等. 交直流线路融冰技术研究[J]. 电网技术, 2008, 32(5): 1-6. [14] 张庆武, 吕鹏飞, 王德林. 特高压直流输电线路融冰方案[J]. 电力系统自动化, 2009, 33(7): 38-42. [15] 李军, 俞翔, 刘心旸, 等. 特高压直流调峰运行功率调节范围评估[J]. 电气技术, 2023, 24(11): 42-47. [16] 薛海平, 赵森林, 卢亚军, 等. 特高压直流工程的融冰控制保护策略及试验分析[J]. 电力工程技术, 2017, 36(1): 84-90. |
|
|
|