|
|
Multi-function flexible multi-state switch control method based on recursive radial basis function neural network sliding mode |
LIAO Jianghua, GAO Wei, TANG Junyi, YANG Gengjie |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract In recent years, the increasing penetration of new energy and electric vehicles poses significant challenges to the current optimization and power quality management of distribution networks. In response to the problems of the stochastic and intermittent nature of distributed generation, a control method for a flexible multi-state switch (FMS) based on recursive radial basis function neural network (RRBFNN) sliding mode is proposed in this paper. The objective is to achieve power interaction, flexible arc suppression for multi-terminal single-phase ground faults, and enhance the disturbance rejection capabilities of the FMS. Beginning with the consideration of parameter perturbations, an improved RRBFNN sliding mode control method is introduced to overcome the inherent chattering in traditional sliding mode control, reduce reliance on the precise mathematical model of the system, and mitigate transient impacts during grid connection. A calculus-based sliding mode surface is employed for flexible arc suppression control, and the control law for the zero-sequence voltage is theoretically derived, enhancing fault current suppression rate. The stability and convergence of the proposed method are further demonstrated through Lyapunov's theorem. Finally, a simulation model of a three-port FMS with its control system is developed in Matlab/Simulink. The feasibility and effectiveness of the proposed strategy are verified through simulation comparisons.
|
Received: 27 November 2023
|
|
|
|
Cite this article: |
LIAO Jianghua,GAO Wei,TANG Junyi等. Multi-function flexible multi-state switch control method based on recursive radial basis function neural network sliding mode[J]. Electrical Engineering, 2024, 25(5): 11-21.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I5/11
|
[1] 张君则. 基于出力特性的分布式电源优化配置与运行[J]. 电气技术, 2022, 23(8): 36-40. [2] 马骏超, 周洁洁, 彭琰, 等. 柔性多状态开关多端口协调优化调控方法[J]. 高电压技术, 2020, 46(4): 1161-1171. [3] 涂春鸣, 李庆, 郭祺, 等. 具备电压质量调节能力的串并联一体化多功能变流器[J]. 电工技术学报, 2020, 35(23): 4852-4863. [4] 袁宇波, 张宸宇, 袁晓冬, 等. 基于柔性多状态开关的混合配电网能量管理策略与控制方法[J]. 电力系统自动化, 2021, 45(8): 60-67. [5] 窦晓波, 皇甫霄文, 全相军, 等. 交直流配电网柔性多状态开关电压自适应控制策略[J]. 电力系统自动化, 2021, 45(8): 68-76. [6] YOU Rui, LU Xiaonan.Voltage unbalance com- pensation in distribution feeders using soft open points[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(4): 1000-1008. [7] 周铭浩, 苏鸿宇, 周皓宇, 等. 柔性多状态开关全阶终端滑模控制[J]. 中国电机工程学报, 2023, 43(22): 8622-8636. [8] 张彬隆, 郭谋发, 简玉婕. 具备接地故障电流转移功能的配电网柔性多状态开关设计方法研究[J]. 中国电机工程学报, 2022, 42(24): 8910-8920. [9] 郭谋发, 游建章, 郑泽胤. 配电网单相接地故障柔性消弧技术综述[J]. 高电压技术, 2023, 49(10): 4232-4246. [10] 涂春鸣, 贾文慧, 郭祺, 等. 面向配电网接地故障暂稳态协同调控的UPQC优化运行方法[J]. 电网技术, 2022, 46(5): 1810-1819. [11] 郭谋发, 郭彩虹, 郑泽胤. 基于多变量解耦控制的配电网单相接地故障集成化柔性消弧方法[J]. 电力自动化设备, 2021, 41(11): 133-139. [12] 许烽, 陆翌, 李继红, 等. 无变压器非对称式柔性多状态开关的零序抑制策略[J]. 高电压技术, 2019, 45(10): 3084-3091. [13] 梅三冠, 卢闻州, 樊启高, 等. 基于滑模观测器误差补偿的永磁同步电机无位置传感器控制策略[J]. 电工技术学报, 2023, 38(2): 398-408. [14] 张国荣, 侯立凯, 彭勃, 等. 柔性多状态开关反馈线性化滑模控制[J]. 电力系统自动化, 2020, 44(1): 126-133. [15] 贺玉晓, 王丽梅. 永磁直线同步电动机迭代超螺旋滑模控制[J]. 电气技术, 2022, 23(6): 24-29. [16] 侯元祥, 巫庆辉, 蔡健哲. 基于二阶滑模控制的定频Buck数字电源设计[J]. 电气技术, 2021, 22(5): 56-61. [17] 郑长明, 张加胜, 陈荣. 基于改进扰动补偿趋近律的离散滑模控制[J]. 控制与决策, 2019, 34(4): 880-884. [18] 张育增, 周睿智, 李帅. 永磁同步直线电机模糊滑模速度控制研究[J]. 电气技术, 2020, 21(12): 23-29. [19] 杨旭红, 陈阳, 贾巍, 等. 基于RBF神经网络的电压外环滑模控制的Vienna整流器[J]. 电力系统保护与控制, 2022, 50(18): 103-115. [20] 王天鹤, 赵希梅, 金鸿雁. 基于递归径向基神经网络的永磁直线同步电机智能二阶滑模控制[J]. 电工技术学报, 2021, 36(6): 1229-1237. |
|
|
|