|
|
Identification of photovoltaic direct current power quality disturbance based on modulated broadband mode decomposition and local preserving projection feature fusion |
XIONG Jie1, ZHU Xianyu1, WANG Na2, LIU Liangjiang1, LI Qingxian1 |
1. Hu’nan Institute of Metrology and Testing, Changsha 410018; 2. Zhejiang Fangyuan Test Group Co., Ltd, Hangzhou 310018 |
|
|
Abstract Nonlinear loads in photovoltaic (PV) direct current (DC) systems may introduce disturbances such as ripples, transients and noise in the DC power signal. Existing time-frequency analysis methods, such as variational mode decomposition, often lead to errors when decomposing PV DC power signals. This paper, building upon the foundation of broadband mode decomposition, employs modulated broadband mode decomposition (MBMD) with a modulation difference operator to denoise PV DC power signals, aiming to reduce decomposition errors. The proposed approach first utilizes MBMD for adaptive signal decomposition, incorporating a local preserving projection (LPP) algorithm for feature fusion. Finally, a back propagation artificial neural network model is employed for intelligent recognition of DC power quality. Simulation and experimental analysis demonstrate that the proposed method can accurately identify various types of disturbances in PV DC power.
|
Received: 03 November 2023
|
|
|
|
Cite this article: |
XIONG Jie,ZHU Xianyu,WANG Na等. Identification of photovoltaic direct current power quality disturbance based on modulated broadband mode decomposition and local preserving projection feature fusion[J]. Electrical Engineering, 2024, 25(5): 22-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I5/22
|
[1] 梅生伟, 郭永庆, 司杨, 等. 太阳能热气流发电技术及其应用展望[J]. 高电压技术, 2019, 45(11): 3401-3412. [2] 张光儒, 任浩栋, 马振祺, 等. 提升配电网承载力和调节能力的整县分布式光伏储能配置方法[J]. 电气技术, 2022, 23(11): 49-55, 61. [3] 黄伟达, 李天友, 黄超艺. 计及分布式光伏的农村配电台区断零故障分析[J]. 电气技术, 2022, 23(2): 31-35. [4] 汪醒鹏, 陈喜莆. 基于SketchUp和PVsyst的建筑群光伏系统优化设计[J]. 电气技术, 2023, 24(3): 52-57. [5] 陈子璇, 席燕辉, 沈银. 基于卡尔曼滤波和深度置信网络的复合电能质量扰动分类[J]. 电力系统保护与控制, 2022, 50(7): 81-90. [6] 刘伟, 王凯. 基于通道选择多尺度融合深度残差网络的电能质量扰动识别[J]. 电气技术, 2023, 24(5): 11-15, 22. [7] 杨杰, 李红梅, 赵春田, 等. 基于相似波形的漏磁检测缺陷信号小波分解及提取方法[J]. 电气技术, 2022, 23(6): 8-16. [8] 邓飞跃, 刘鹏飞, 陈恩利, 等. 基于自适应频率窗经验小波变换的列车轮对轴承多故障诊断[J]. 铁道学报, 2019, 41(5):55-63. [9] 王晓卫, 王雪, 王毅钊, 等. 基于图像信息熵与多元变分模态分解的电缆局放信号去噪方法[J/OL]. 电工技术学报, 1-17[2023-12-29]. https://doi.org/10.19595/j.cnki.1000-6753.tces.230638. [10] 吕明珠, 刘世勋, 苏晓明, 等. 基于自适应变分模态分解和包络谐噪比的滚动轴承早期退化检测[J]. 振动与冲击, 2021, 40(13): 271-280. [11] 杨逸帆, 赵兵兵, 康迪, 等. 基于改进希尔伯特-黄变换的电力系统谐波检测系统设计[J]. 电气技术, 2022, 23(5): 9-17. [12] 孙聪, 鞠鹏飞, 李大华, 等. 基于自适应集合经验模态分解算法的局部放电信号降噪研究[J]. 电气技术, 2022, 23(2): 67-72, 78. [13] 姜涛, 刘博涵, 李雪, 等. 基于自适应投影多元经验模态分解的电力系统强迫振荡源定位[J]. 电工技术学报, 2023, 38(13): 3527-3538. [14] PENG Yanfeng, LI Zepei, HE Kuanfang, et al.Broadband mode decomposition and its application to the quality evaluation of welding inverter power source signals[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9734-9746. [15] PENG Yanfeng, LI Zepei, HE Kuanfang, et al.Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH[J]. Measurement, 2020, 158: 107683. [16] PENG Yanfeng, WANG Zucheng, HE Kuanfang, et al.Modulated broadband mode decomposition for the feature extraction of double pulse metal inert gas welding[J]. IEEE Access, 2020, 8:134031-134041. [17] 郑近德, 潘海洋, 程军圣, 等. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击, 2016, 35(8): 116-123. [18] ZHENG Jinde, JIANG Zhanwei, PAN Haiyang.Sigmoid- based refined composite multiscale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing[J]. Measurement, 2018, 129: 332-342. [19] ZHENG Jinde, PAN Haiyang, CHENG Junsheng.Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines[J]. Mechanical Systems and Signal Processing, 2017, 85:746-759. |
|
|
|