|
|
Design of non-intrusive intelligent monitoring terminal for secure power usage |
YU Wuqiang, MA Xiao, WANG Zhimin, YANG Hongxiang, SU Zhicheng |
Lijiang Power Supply Bureau of Yunnan Power Grid Co., Ltd, Lijiang, Yunnan 674100 |
|
|
Abstract A non-intrusive intelligent monitoring terminal for secure power usage is designed to address safety incidents such as short circuits, leakage, and electric bicycle charging that can easily trigger tripping and fire. Precision resistance voltage divider and high-precision zero flux current sensor are used to achieve voltage and current analog signal measurement, and high harmonic characteristics are fully preserved through 10kHz high-frequency sampling. Using dual core Cortex-A9 ARM and Xilinx Artix7 FPGA as information processing units, they can simultaneously process six channel high-frequency sampling signals. Abnormal power usage characteristics of short circuits, leakage and electric bicycle charging are studied. Non-intrusive abnormal electricity usage identification software is developed based on convolutional neural network model. Testing results show that the designed intelligent monitoring terminal can accurately identify the above typical abnormal power usage events.
|
Received: 27 October 2023
|
|
|
|
[1] 刘宇, 刘丛笑, 赵欣, 等. 基于维特比算法改进的稳暂态混合非侵入式负荷识别方法[J]. 电工技术学报, 2023, 38(19): 5241-5255. [2] 雷怡琴, 孙兆龙, 叶志浩, 等. 电力系统负荷非侵入式监测方法研究[J]. 电工技术学报, 2021, 36(11): 2288-2297. [3] 田星星, 李龙龙, 王瑞. 台区智能终端数据集采APP的设计和实现[J]. 电气技术, 2021, 22(2): 96-100. [4] 琚永刚, 徐德勤, 侯红磊, 等. 智能模块化终端配电系统设计[J]. 电气技术, 2022, 23(5): 68-72. [5] 韦雅, 闫爱国, 文耀宽, 等. 基于大数据的用电安全智能监测终端研究[J]. 自动化与仪器仪表, 2020(7): 140-143. [6] 陈阳生. 基于本地功率基准的异常用电监测新方法[D]. 北京: 华北电力大学, 2014. [7] 谢鸿鹄. 基于物联网的分布式低压配电远程监测系统[D]. 南昌: 南昌航空大学, 2021. [8] 袁祯. 基于多维数据的电动汽车直流充电桩状态在线监测终端研究[D]. 南昌: 南昌大学, 2021. [9] 王霄翔, 王文龙. 运行功耗动态变化的配电终端研发与应用[J]. 电气技术, 2021, 22(4): 69-72. [10] 邱勇, 张顾峰, 徐晓敏. 新型电能监测终端在配电网抢修的应用[J]. 农村电工, 2020, 28(6): 36-37. [11] 林华梁, 彭松. 配电终端绝缘性能自动测试系统的研究与应用[J]. 电气技术, 2023, 24(5): 65-70. [12] 许冠炜, 郑荣进, 邓明在. 低压电网线性负载漏电流的特性分析[J]. 电气技术, 2021, 22(1): 29-34, 108. [13] 施雨松. 基于非侵入式方法的电动自行车充电负荷辨识方法研究[D]. 南京: 东南大学, 2022. |
|
|
|