|
|
Interval prediction of load based on Copula function and multi-objective evolutionary algorithm |
LI Zhixuan, LI Jiafeng, YE Xiaohua, XIONG Xianzhi, LI Tianze |
Xi'an XD Power Systems Co., Ltd, Xi'an 710076 |
|
|
Abstract Compared with the point prediction, the load interval prediction can provide the upper and lower bounds of the prediction value, which is more conducive to the stable operation of the power system. Aiming at the problem that the correlation between adjacent load sequences is not fully utilized, thereby reducing the prediction accuracy, a load interval prediction method based on Copula function and the multi-objective evolutionary algorithm based on decomposition (MOEA/D) is proposed. This method makes full use of the correlation between adjacent load sequences by establishing a Copula function. The MOEA/D multi-objective optimization algorithm is used to find the Pareto optimal solution set, and through entropy weight method and technique for order preference by similarity to ideal solution (TOPSIS), the optimal prediction model parameters and the prediction results are obtained. Finally, this method is applied to load forecasting for a certain area, and compared with commonly used interval forecasting methods. The results show that this method has better forecasting effect.
|
Received: 21 November 2023
|
|
|
|
Cite this article: |
LI Zhixuan,LI Jiafeng,YE Xiaohua等. Interval prediction of load based on Copula function and multi-objective evolutionary algorithm[J]. Electrical Engineering, 2024, 25(6): 24-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I6/24
|
[1] 赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学报, 2022, 37(5): 1242-1251. [2] 储晨阳, 秦川, 鞠平, 等. 基于优化稀疏编码的超短期负荷滚动多步预测[J]. 电工技术学报, 2021, 36(19): 4050-4059. [3] 黎青, 王万军, 周振平. 微电网系统最优容量配比及潮流分析研究[J]. 电气技术, 2022, 23(12): 17-23. [4] 何英静, 王曦冉, 王文涛, 等. 电力市场背景下考虑设备投资潜在价值的输电网规划[J]. 电气技术, 2022, 23(12): 1-8. [5] 喻小宝. 电力市场环境下售电公司购售电交易优化模型研究[D]. 北京: 华北电力大学, 2018. [6] 叶瑰昀, 罗耀华, 刘勇, 等. 基于ARMA模型的电力系统负荷预测方法研究[J]. 信息技术, 2002, 26(6): 74-76. [7] 黄帅栋, 卫志农, 高宗和, 等. 基于非负矩阵分解的相关向量机短期负荷预测模型[J]. 电力系统自动化, 2012, 36(11): 62-66. [8] 牛东晓, 刘达, 陈广娟, 等. 基于遗传优化的支持向量机小时负荷滚动预测[J]. 电工技术学报, 2007, 22(6): 148-153. [9] 康义, 师刘俊, 郭刚. 基于WT-IPSO-BPNN的电力系统短期负荷预测[J]. 电气技术, 2021, 22(1): 23-28, 62. [10] 万昆, 柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术, 2012, 36(11): 77-81. [11] 陈轩伟. 基于BP-QR模型的负荷区间预测[J]. 电气技术, 2022, 23(4): 14-17, 24. [12] QUAN Hao, SRINIVASAN D, KHOSRAVI A.Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73: 916-925. [13] 李知艺, 丁剑鹰, 吴迪, 等. 电力负荷区间预测的集成极限学习机方法[J]. 华北电力大学学报(自然科学版), 2014, 41(2): 78-88. [14] 宗文婷, 卫志农, 孙国强, 等. 基于改进高斯过程回归模型的短期负荷区间预测[J]. 电力系统及其自动化学报, 2017, 29(8): 22-28. [15] 赵丽琴. 基于Copula函数的金融风险度量研究[D]. 厦门: 厦门大学, 2009. [16] 宋宇, 李涵. 基于核密度估计和Copula函数的风、光出力场景生成[J]. 电气技术, 2022, 23(1): 56-63. [17] 黎静华, 梁浚杰. 适合于分析广义负荷序列间相关关系的最优延位法[J]. 电力系统自动化, 2017, 41(21): 17-24. [18] 兰飞, 桑川川, 梁浚杰, 等. 基于条件Copula函数的风电功率区间预测[J]. 中国电机工程学报, 2016, 36(增刊1): 79-86. [19] 张冬梅, 龚小胜, 戴光明, 等. 求解复杂多目标优化问题MOEA/D-GEP算法[J]. 华中科技大学学报(自然科学版), 2012, 40(4): 33-36. [20] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. |
|
|
|