|
|
Analysis and lightning protection strategy research on lightning-induced tripping of 110kV overhead transmission lines in Zhennning |
GUO Wei1, WANG Dejun2, ZHAO Jiang2, WANG Jingcheng1, NIU Ruijie1 |
1. Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710054; 2. Hua'neng Clean Energy Co., Ltd Guizhou Branch, Guiyang 550081 |
|
|
Abstract To mitigate the impact of lightning on power transmission from mountainous new energy stations and enhance the effectiveness of protection against lightning damage, this paper takes a 100MW photovoltaic station in Zhenning, Guizhou as a case study. It begins by analyzing the geographical and climatic conditions of the station's location, along with the spatial and temporal distribution of lightning. The study delves into the transient wave processes of lightning faults, and the mechanisms of tower lightning voltage and current, to deeply analyze the discharge mechanisms of transmission line towers due to lightning. Field investigations reveal that lightning-induced tripping of transmission lines primarily results from excessive ground resistance of towers causing backflashover voltages, and direct or induced lightning voltages exceeding the lines' lightning withstand level. Considering the main inducements of lightning trips, several lightning protection measures are implemented, including the installation of flexible grounding to reduce resistance, enhanced line insulation matching, and gapless zinc oxide surge arresters in lightning-prone sections. Field tests show a significant reduction and good maintenance of tower grounding resistance. Over the course of a year, the modified line's tripping rate is significantly lower than that of neighboring lines in the same region and the line's own historical rates during the same period. The findings demonstrate that an integrated lightning protection strategy effectively enhances the safety and reliability of transmission lines, offering significant practical value for improving the performance of lines in areas prone to frequent lightning.
|
Received: 22 April 2024
|
|
|
|
Cite this article: |
GUO Wei,WANG Dejun,ZHAO Jiang等. Analysis and lightning protection strategy research on lightning-induced tripping of 110kV overhead transmission lines in Zhennning[J]. Electrical Engineering, 2024, 25(7): 56-61.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I7/56
|
[1] 黄怡鋆, 樊亚东, 王红斌, 等. 组合八邻域跟踪算法监测全闪电雷暴活动时空演变过程及特征[J]. 电工技术学报, 2024, 39(5): 1536-1547. [2] 刘经纬. 电源薄弱地区电气化铁路牵引供电动态仿真方法研究[D]. 北京: 北京交通大学, 2022. [3] 邓红军. 110kV输电线路雷电绕击及防雷探析[J]. 冶金管理, 2023(21): 73-75. [4] 陈卓, 陈嘉康. 220kV高压输电线路防雷接地技术探析[J]. 电气技术与经济, 2024(1): 338-339, 342. [5] 杨秀庄, 卢璐, 王宇. 贵州雷电时空分布及强度特征分析[J]. 贵州气象, 2008, 32(5): 6-8. [6] 宋晓菲. 35kV架空输电线路雷击模型及防雷应用研究[D]. 西安: 西安工程大学, 2017. [7] 赵春宇, 吴红石, 熊志群, 等. 高压输电线路的防雷技术[J]. 模具制造, 2023, 23(11): 175-177. [8] 徐双, 彭华厦, 李芳勤, 等. 炎陵地区10kV架空线路防雷仿真分析与改进[J]. 电工技术, 2022(13): 151-154, 182. [9] 周艳青, 谌阳. 500kV某变电站雷电侵入波过电压计算[J]. 电气技术, 2021, 22(3):104-108. [10] 杨翔. 一种新型线路避雷器及其对复杂地形线路防雷保护影响研究[D]. 重庆: 重庆大学, 2016. [11] 王小川. 电力输电线路的防雷击技术研究[J]. 自动化应用, 2023, 64(10): 148-150. [12] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. [13] 陈希明. 金华电网冰灾雷害分析[D]. 杭州: 浙江大学, 2008. [14] 李文斌, 刘明波. 高压输电线路防雷方法的探讨[J]. 广东输电与变电技术, 2009, 11(3): 56-60, 65. [15] 陈刚. 谈输电线路的防雷[C]//中国科学技术协会2005年学术年会11分会场暨中国电机工程学会2005年学术年会, 乌鲁木齐, 2005. [16] 王继承, 金涛. 220kV朝山I、Ⅱ回线防雷应用研究[J]. 云南电业, 2012(4): 41-42. [17] 交流电气装置的过电压保护和绝缘配合: DL/T 620—1997[S] DL/T 620—1997[S]. 北京: 中国电力出版社, 1997. [18] 中国气象局. 中国气象灾害年鉴(2020)[M]. 北京: 气象出版社, 2021. [19] 傅金红. 浅谈110kV双回路同塔架设线路防雷[C]//中国电力规划设计协会2013年供用电设计技术交流会, 北京, 2013. [20] MISRIKHANOV M S, MIRZAABDULLAEV A O.On application features of nonlinear surge suppressors on overhead power transmission lines[J]. Power Tech- nology and Engineering, 2020, 54(4): 570-574. [21] 李传东. LNG接收站防雷系统优化研究[D]. 徐州: 中国矿业大学, 2021. [22] WANG Bowen, LU Jiazheng, FANG Zhen, et al.Development of antithunder composite insulator for distribution line[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(1): 100-107. [23] 何飞. 110kV输电线路防雷技术研究与实施[D]. 西安: 西安理工大学, 2016. [24] 王录亮, 韩来君, 黄松. 海南强雷区典型配电线路差异化防雷措施研究[J]. 电气技术, 2022, 23(3): 103-108. [25] WU Dong, WANG Jufeng.Lightning protection of the explosion airflow arc-quenching gap for 110kV transmission lines[J]. Energies, 2021, 14(16): 5126. [26] 杨永林. 黄冈地区治理雷害研究[D]. 宜昌: 三峡大学, 2012. [27] 多雷区110kV~500kV交流同塔多回输电线路防雷技术导则: DL/T 1784—2017[S] DL/T 1784—2017[S]. 北京: 中国电力出版社, 2017. [28] 张恒志, 扎西曲达, 杨浩, 等. 西藏电网220kV线路雷害故障及防雷措施分析[J]. 电气技术, 2020, 21(4): 122-124. [29] 李悦. 110kV输电线路复合材料杆塔防雷仿真研究[D]. 徐州: 中国矿业大学, 2017. [30] 谷炜, 朱炳铨, 项中明, 等. 一种雷暴天气输电线路风险预警方法: CN116109133A[P].2023-05-12. [31] 罗佳俊, 周燕川. 防雷产品优化设计中价值工程的应用[J]. 电气技术, 2019, 20(12): 88-90, 93. [32] 黄杰雄. 输电线路设计中的防雷措施及应用[J]. 城市建设理论研究 (电子版), 2013(9): 1-4. [33] LANGOT J, GOURCEROL E, SERBESCU A, et al.Performance of painted and non-painted non-woven nickel-coated carbon fibers for lightning strike protection of composite aircraft[J]. Composites Part A: Applied Science and Manufacturing, 2023, 175: 107772. [34] 张运庭, 段庆成. 线路型氧化锌避雷器: CN2456279Y[P].2001-10-24. [35] 袁涛, 左思家, 司马文霞, 等. 紧凑型多腔室并联间隙雷电冲击闪络路径约束研究[J]. 电工技术学报, 2023, 38(11): 2989-2998. [36] 乾源风电, 华能清能院, 鉴衡认证中心. 中国典型区域风电场雷击风险研究白皮书[C]//2023年全球海上风电大会论文集, 唐山, 2023: 1-32. [37] 邓渝亭, 陈亮. 风电场集电线路防雷保护的研究[J]. 电气技术, 2016, 17(6): 167-169. [38] 梁开旺, 冯珊. 10kV线路穿刺型避雷器安装配置方式实验与仿真研究[J]. 电气技术, 2022, 23(4): 102-108. [39] 雷艾虎, 王昆能, 王家祥, 等. 人工智能在新型电力系统中的应用[J]. 集成电路应用, 2023, 40(10): 308-309. [40] 郭琳玲. 西藏地区混压同塔多回输电线路防雷保护研究[J]. 电子元器件与信息技术, 2023, 7(11): 165-169. [41] 龚石林, 冯彦钊. 差异化的防雷措施在配电线路中的应用[J]. 电气技术, 2015, 16(8): 95-98. [42] 张文锋, 李志伟, 张国建, 等. 山区35kV架空线路雷击特性仿真分析[J]. 电气技术, 2022, 23(9): 19-28. [43] 肖庆华. 输电线路设计中线路防雷技术的运用[J]. 科技资讯, 2023, 21(22): 96-99. |
|
|
|