|
|
Identification of oil-paper insulation parameters based on multi-strategy fusion particle swarm optimization |
XU Chenzhan, LIU Qingzhen |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract To address the issues of slow convergence speed, susceptibility to local optima, and unstable convergence results in particle swarm optimization (PSO) algorithm, this paper proposes a multi-strategy fusion particle swarm optimization (MSF-PSO) by enhancing the traditional PSO algorithm in three aspects: initial population, boundary handling, and inertia weight. Through the examination of testing functions, the MSF-PSO algorithm is proven to considerably enhance computational speed and efficiency. The MSF-PSO algorithm is applied to the identification of parameters for the Debye equivalent circuit in the dielectric response of oil-paper insulation. The computational results demonstrate that the polarization spectrum of the recovered voltage obtained by this algorithm exhibits better concordance with the polarization spectrum of the recovered voltage acquired from field tests, in comparison to other particle swarm optimization algorithms. This further validates the accuracy of the proposed method and establishes a crucial foundation for diagnosing the aging condition of transformer oil-paper insulation equipment.
|
Received: 15 May 2024
|
|
|
|
Cite this article: |
XU Chenzhan,LIU Qingzhen. Identification of oil-paper insulation parameters based on multi-strategy fusion particle swarm optimization[J]. Electrical Engineering, 2024, 25(9): 14-21.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I9/14
|
[1] 赖汶鸿, 刘庆珍, 鄢仁武. 基于关联信息熵和轻量级梯度提升机的油纸绝缘特征优选策略[J]. 电气技术, 2024, 25(1): 34-41, 47. [2] 林朝明, 叶荣. 油浸式变压器绝缘诊断方法的研究进展[J]. 电气技术, 2019, 20(12): 1-6, 22. [3] 邹阳, 林锦煌, 何津, 等. 基于频谱解构法的油纸绝缘扩展德拜模型参数辨识[J]. 电工技术学报, 2023, 38(3): 622-632. [4] 苏凯强, 刘庆珍. 基于TLS-ESPRIT算法的变压器油纸绝缘等效电路参数辨识及新特征量提取[J]. 电气技术, 2022, 23(7): 89-96. [5] 史加奇, 赵春明, 许文燮, 等. 基于WOA-LM算法的变压器油纸绝缘等效模型参数辨识[J]. 水电能源科学, 2021, 39(8): 190-193. [6] 陈俊鸿, 刘庆珍, 高浩. 基于矩阵束算法的油纸绝缘变压器去极化电流等效电路参数辨识[J]. 广东电力, 2021, 34(1): 89-96. [7] 莫仕勋, 杨皓, 蒋坤坪, 等. 基于改进秃鹰搜索算法的变压器J-A模型参数辨识[J]. 电工电能新技术, 2022, 41(4): 67-74. [8] 林峻宁, 严柏平, 冯浩文, 等. 基于模拟退火改进PSO算法的J-A磁滞模型参数辨识[J]. 变压器, 2024, 61(2): 26-34. [9] 王杰, 姜念, 张毅. SVM算法的区间自适应PSO优化及其应用[J]. 郑州大学学报(工学版), 2011, 32(1): 75-79. [10] 林智勇, 蔡金锭. 油纸绝缘极化等效电路参数计算方法[J]. 电机与控制学报, 2014, 18(8): 62-66. [11] 李秋红. 基于改进粒子群算法的前馈神经网络识别用户窃电行为[J]. 电气技术, 2022, 23(11): 44-48. [12] 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164. [13] 徐杰, 周新志. 基于边界自适应技术的精英交互学习粒子群算法[J]. 计算机科学, 2023, 50(11): 210-219. [14] 张慧峰, 邹德旋, 刘树赵, 等. 融合反向学习和黄金正弦的改进粒子群算法[J]. 计算机时代, 2023(4): 48-52, 57. [15] SHI Y, EBERHART R.A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 1998: 69-73. [16] 陈群静, 蔡金锭, 叶荣. 基于去极化电量的油纸绝缘变压器微水含量评估[J]. 电气技术, 2019, 20(3): 62-66. [17] 蔡超, 刘庆珍, 范映, 等. 基于油纸绝缘变压器回复电压法的半峰周期极化谱分析[J]. 电气技术, 2020, 21(3): 79-83, 90. [18] 孔鹏飞. 融合爬山策略的改进粒子群混合路径规划算法[J/OL]. 电光与控制, 1-8 [2024-06-04]. http://kns.cnki.net/kcms/detail/41.1227.TN.20240524.0905.002.html. [19] 高森, 王康, 姜宏昌, 等. 基于改进粒子群算法的永磁同步电机参数辨识[J]. 微特电机, 2023, 51(11): 65-70. |
|
|
|