|
|
Research on the influence of distributed generation on electric power system voltage and reactive power optimization |
LI Bin1, LUO Xiaoyi2 |
1. China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000; 2. State Grid Sichuan Electric Power Company, Chengdu 610041 |
|
|
Abstract In order to quickly and efficiently solve the problem of voltage and reactive power optimization after the distributed generation is connected to the power system, a new method of voltage and reactive power optimization coordination control based on multi-agent system (MAS) is proposed. With the goal of minimizing the system loss and considering voltage stability, a partitioned distributed optimization and coordinated control model based on auxiliary problem principle is constructed by MAS. The global optimal solution is obtained after partition parallel solving, and the optimal system loss and node voltage stability data are obtained. The changes of system voltage and reactive power after single and multiple distributed generations accessing are studied. The optimal access position of distributed generations is obtained through analysis, that is, the access from this point has the best effect on the system voltage and reactive power. Finally, the rationality and correctness of the proposed method are proved by simulation calculation of the EPRI-36 node system.
|
Received: 08 April 2024
|
|
|
|
Cite this article: |
LI Bin,LUO Xiaoyi. Research on the influence of distributed generation on electric power system voltage and reactive power optimization[J]. Electrical Engineering, 2024, 25(10): 55-61.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I10/55
|
[1] WALLING R A, SAINT R, DUGAN R C, et al.Summary of distributed resources impact on power delivery systems[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1636-1644. [2] 刘东, 张弘, 王建春. 主动配电网技术研究现状综述[J]. 电力工程技术, 2017, 36(4): 2-7, 20. [3] 张君则. 基于出力特性的分布式电源优化配置与运行[J]. 电气技术, 2022, 23(8): 36-40. [4] 宋明刚, 陶骏, 张华赢, 等. 新能源接入配电网的电压无功自律-协同控制[J]. 电力系统及其自动化学报, 2022, 34(1): 38-47. [5] 宋宇, 李涵, 楚皓翔, 等. 计及可靠性的风光互补发电系统容量优化配比研究[J]. 电气技术, 2022, 23(6): 49-58, 68. [6] 余立武, 李浩然, 刘岩. 考虑分布式电源出力随机性的配电网无功优化策略[J]. 电网与清洁能源, 2017, 33(12): 91-98. [7] 蒲天骄, 刘克文, 李烨, 等. 基于多代理系统的主动配电网自治协同控制及其仿真[J]. 中国电机工程学报, 2015, 35(8): 1864-1874. [8] 杨洋, 吕林, 肖万芳, 等. 主动配电网多代理能量管控的分层协同策略[J]. 电力系统及其自动化学报, 2016, 28(7): 117-124. [9] 吴星, 刘天羽, 江秀臣, 等. 基于改进遗传算法的海上风电场无功优化[J]. 电测与仪表, 2020, 57(4): 108-113. [10] 赵倩, 陈芳芳, 甘露. 基于改进粒子群算法优化支持向量机的风电功率预测[J]. 电气技术, 2020, 21(12): 12-16. [11] 董国玉. 基于萤火虫算法的分布式电源优化配置研究[J]. 电源技术, 2017, 41(10): 1487-1489. [12] 陈文献, 梁嘉翔, 陈相吾, 等. 基于免疫遗传算法的小水电配电网无功优化[J]. 电网与清洁能源, 2018, 34(8): 53-59. [13] 张健, 王凯悦. 考虑电压稳定性的含分布式电源配电网多目标无功优化[J]. 电气技术, 2020, 21(3): 64-69. [14] 阳育德, 龚利武, 韦化. 大规模电网分层分区无功优化[J]. 电网技术, 2015, 39(6): 1617-1622. [15] 林少华, 吴杰康, 莫超, 等. 基于二阶锥规划的含分布式电源配电网动态无功分区与优化方法[J]. 电网技术, 2018, 42(1): 238-246. [16] 颜湘武, 徐韵. 考虑网络动态重构含多异质可再生分布式电源参与调控的配电网多时空尺度无功优化[J]. 电工技术学报, 2019, 34(20): 4358-4372. [17] 寇凌峰, 吴鸣, 李洋, 等. 主动配电网分布式有功无功优化调控方法[J]. 中国电机工程学报, 2020, 40(6): 1856-1864. [18] 张进, 胡存刚, 芮涛. 基于交替方向乘子法的主动配电网日前两阶段分布式优化调度策略[J]. 中国电力, 2021, 54(5): 91-100. [19] 刘宝英, 杨仁刚. 采用辅助问题原理的多分区并行无功优化算法[J]. 中国电机工程学报, 2009, 29(7): 47-51. [20] 陈明, 顾伟, 李鹏, 等. 主动配电网分区分布式无功优化控制方法[J]. 现代电力, 2017, 34(6): 40-44. [21] KESSEL P, GLAVITSCH H.Estimating the voltage stability of a power system[J]. IEEE Transactions on Power Delivery, 1986, 1(3): 346-354. [22] CONTRERAS J, LOSI A, RUSSO M, et al.Simulation and evaluation of optimization problem solutions in distributed energy management systems[J]. IEEE Transactions on Power Systems, 2002, 17(1): 57-62. [23] 李斌, 刘天琪, 李兴源. 分布式电源接入对系统电压稳定性的影响[J]. 电网技术, 2009, 33(3): 84-88. |
|
|
|