电气技术  2019, Vol. 20 Issue (ZK1): 24-30    DOI:
研究与开发 |
基于运营数据分析的重载铁路能力计算
罗强, 陈军华
北京交通大学交通运输学院,北京 100044
Heavy haul railway capacity calculation based on operational data analysis
Luo Qiang, Chen Junhua
School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044
全文: PDF (21738 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 能力计算与利用是铁路运输研究的核心,重载铁路因其大运量、长运距、多制式等特点,其能力计算问题备受关注。现行的扣除系数法等传统能力计算方法在实际操作过程中表现出很大的不适应性,如扣除标准难以确定、实绩图平图特征不强,进而影响了计算结果的精度。本文借鉴平均最小列车间隔时间法,结合大数据应用,提出了一套适用于重载铁路区间通过能力测算的方法。以典型重载铁路包神南线为例,应用该套测算方法对各区间通过能力进行了测算,结果较为可靠,并得到现场认可。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗强
陈军华
关键词 能力计算重载铁路数据分析处理平均最小列车间隔时间法    
Abstract:Capacity calculation and utilization is the core of railway transportation research. Heavy haul railways have attracted more attention due to their large-capacity, long-distance, multi-standard and other characteristics. The traditional method of calculating the capacity such as the subtraction coefficient method shows great incompatibility in the actual operation process. Such as the deduction standard is difficult to determine, and the parallelism of performance map is not obvious, affectting the accuracy of the calculation result. Based on the average minimum train interval method and the application of big data, this paper proposes a set of calculation methods suitable for the calculation of the capacity of heavy haul railway. Taking the typical heavy haul railway Baoshen South line as an example, applying this set of calculation methods to measure the capacity of each interval, the calculation results are more reliable and received on-site recognition.
Key wordscapacity calculation    heavy haul railway    data analysis processing    average minimum train interval method   
收稿日期: 2019-08-21      出版日期: 2020-01-08
基金资助:科技部国家重点研发计划项目(2018YFB1201401)
作者简介: 罗强(1998-),男,硕士研究生,研究方向为交通运输规划与管理。
引用本文:   
罗强, 陈军华. 基于运营数据分析的重载铁路能力计算[J]. 电气技术, 2019, 20(ZK1): 24-30. Luo Qiang, Chen Junhua. Heavy haul railway capacity calculation based on operational data analysis. Electrical Engineering, 2019, 20(ZK1): 24-30.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2019/V20/IZK1/24