电气技术  2023, Vol. 24 Issue (9): 65-70    DOI:
技术与应用 |
基于余弦相似性的在线监测系统智能预警方法
张军军
国电南京自动化股份有限公司,南京 211106
Intelligent early warning method of online monitoring system based on cosine similarity
ZHANG Junjun
Guodian Nanjing Automation Co., Ltd, Nanjing 211106
全文: PDF (2945 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对当前发电厂在线监测系统设备报警即故障的问题,提出一种基于余弦相似性的电力设备智能预警方法。基于发电厂远程诊断平台提供的设备监测数据驱动,根据设备特征参量,利用余弦相似性计算设备测点数据之间的相关性,得到状态矩阵,进而构建针对特定设备测点数据的预警模型,以实现设备的早期预警。工程应用案例表明,本文所提方法可实现智能预警,解决了在线监测系统设备报警即故障的问题,减少了电厂设备故障的发生,提升了巡检人员的工作效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军军
关键词 余弦相似性在线监测系统智能预警数据驱动特征参量    
Abstract:When there is equipment alarms in the online monitoring system of power plants, there is equipment failure. An intelligent early warning method of power equipment based on cosine similarity is proposed to address this problem. Based on the equipment monitoring data provided by the remote diagnosis platform of the power plant, the cosine similarity is used to calculate the correlation between the equipment measurement point data according to the equipment characteristic parameters, and the state matrix is obtained. Then the early warning model for the specific equipment measurement point data is constructed to realize the early warning of the equipment. The engineering application case shows that the method proposed to this paper can carry out equipment early warning in advance, reduce the occurrence of power plant equipment fault, and improve the work efficiency of patrol inspectors.
Key wordscosine similarity    online monitoring system    intelligent early warning    data driven    characteristic parameters   
收稿日期: 2023-07-07     
作者简介: 张军军(1994—),男,硕士,工程师,主要从事电气设备在线监测与预警诊断智能化技术研究工作。
引用本文:   
张军军. 基于余弦相似性的在线监测系统智能预警方法[J]. 电气技术, 2023, 24(9): 65-70. ZHANG Junjun. Intelligent early warning method of online monitoring system based on cosine similarity. Electrical Engineering, 2023, 24(9): 65-70.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2023/V24/I9/65