电气技术  2024, Vol. 25 Issue (10): 30-35    DOI:
研究与开发 |
基于营销大数据的售电市场客户分类识别研究
龙鹏, 徐涛, 吴新瑞, 彭斌, 揭业炜
国网浙江省电力有限公司嘉兴供电公司,浙江 嘉兴 314000
Research on customer classification and identification in electricity sales market based on marketing big data
LONG Peng, XU Tao, WU Xinrui, PENG Bin, JIE Yewei
Jiaxing Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd, Jiaxing, Zhejiang 314000
全文: PDF (762 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 随着售电市场改革的稳步推进和竞争的不断加剧,为了帮助售电公司更好地选择目标客户,提升售电公司利润,降低用电客户用电成本,促进售电市场健康稳定发展,本文提出基于营销大数据的客户分类解决方案。该方案利用客户征信、电表采集的数据等信息建立客户数据库,基于熵权法和专家打分法,合理运用指标选取原则,建立客户综合评价指标体系,通过“四象限”理论将客户划分为优质型、稳健型、淘汰型、风险型四类,为售电公司精准定位目标用户提供数据参考。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙鹏
徐涛
吴新瑞
彭斌
揭业炜
关键词 大数据售电市场客户分类识别    
Abstract:With the steady progress of the reform of the electricity sales market and the increasing competition, this article proposes a customer classification solution based on marketing big data, in order to help electricity sales companies better select target customers, improve their profits, reduce electricity costs for customers, and promote the healthy and stable development of the electricity sales market. The solution utilizes customer credit information, electricity meters collected data and other information to establish a customer database. Based on the entropy weight method and expert scoring method, the principle of selecting indicators is reasonably applied to establish a comprehensive evaluation index system of customers. Through the “four quadrant” theory, customers are divided into four categories including high-quality, stable, eliminated, and risky, which provides reference for electricity sales companies to accurately locate target users.
Key wordsbig data    electricity sales market    customer classification    identification   
收稿日期: 2024-06-04     
作者简介: 龙 鹏(1991—),男,江苏徐州人,硕士,工程师,主要从事电力营销方面的研究工作。
引用本文:   
龙鹏, 徐涛, 吴新瑞, 彭斌, 揭业炜. 基于营销大数据的售电市场客户分类识别研究[J]. 电气技术, 2024, 25(10): 30-35. LONG Peng, XU Tao, WU Xinrui, PENG Bin, JIE Yewei. Research on customer classification and identification in electricity sales market based on marketing big data. Electrical Engineering, 2024, 25(10): 30-35.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2024/V25/I10/30