Research progress and application prospects analysis of active lightning protection technology
LI Guoqiang1, CHEN Keji1, BIAN Rong1, CHEN Sile2, CHEN Zhaoquan2
1. State Grid Zhejiang Economic and Technological Research Institute, Hangzhou 310000; 2. School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan, Anhui 243032
Abstract:The traditional passive lightning protection technology mainly considers reducing the damage to the protected object after lightning occurs, which is increasingly difficult to meet modern lightning protection requirements. It is urgent to develop more proactive lightning protection technologies, directly regulating the generation and characteristics of lightning before providing protection. This paper briefly describes the development history of lightning physics and lightning protection technologies, with a focus on the research status of three active lightning protection technologies: new type air termination system, rocket-triggered lightning, and laser-triggered lightning. It also introduces other active lightning protection technologies represented by unmanned aerial vehicle lightning protection, compares the advantages and disadvantages of several active lightning protection technologies, analyzes the problems existing in current active lightning protection technologies, and looks forward to the future development trend of active lightning protection technologies.
[1] CECIL D J, BUECHLER D E, BLAKESLEE R J.Gridded lightning climatology from TRMM-LIS and OTD: dataset description[J]. Atmospheric Research, 2014, 135: 404-414. [2] XU Mingyi, QIE Xiushu, PANG Wenjing, et al.Light-ning climatology across the Chinese continent from 2010 to 2020[J]. Atmospheric Research, 2022, 275: 106251. [3] 赵伟, 周娟, 陈科技. 水体及周边雷电分布特征分析[J]. 气象水文海洋仪器, 2025, 42(1): 100-103. [4] HOLLE R L.The number of documented global lightning fatalities[C]//24th International Lightning Detection Conference, San Diego, California, USA, 2016. [5] 蔡力, 杜懿阳, 胡强, 等. 火箭引雷至架空线路与地面近距离磁场对比分析[J]. 电工技术学报, 2023, 38(24): 6798-6806. [6] HOWARD J, UMAN M A, BIAGI C, et al.RF and X-ray source locations during the lightning attachment process[J]. Journal of Geophysical Research: Atmo-spheres, 2010, 115(D6): D06204. [7] CUMMINS K L, MURPHY M J.An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3): 499-518. [8] JIANG Rubin, XIE Xiushu, LIU Mingyuan, et al.High speed video observation on random stepping and branching of negative leader[C]//2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 2014: 1445-1447. [9] WAMER T A, CUMMINS K L, ORVILLE R E.Upward lightning observations from towers in rapid city, south dakota and comparison with national light-ning detection network data, 2004-2010[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D19): D19109. [10] DWYER J R, UMAN M A.The physics of lightning[J]. Physics Reports, 2014, 534(4): 147-241. [11] 赵泽洋, 刘亚坤. 考虑风电场需求的广域水平风速与雷电活动特征分析[J]. 电工技术学报, 2024, 39(11): 3467-3474. [12] ZENG Rong, ZHUANG Chijie, ZHOU Xuan, et al.Survey of recent progress on lightning and lightning protection research[J]. High Voltage, 2016, 1(1): 2-10. [13] GUSHCHIN M E, ZUDIN I Y, VERSHININ I M, et al. Subnanosecond electromagnetic pulse generated by a long spark discharge: lightning implication[J]. Geophy-sical Research Letters, 2024, 51(11): e2023GL107812. [14] 陈维江, 曾嵘, 贺恒鑫. 长空气间隙放电研究进展[J]. 高电压技术, 2013, 39(6): 1281-1295. [15] MILLEN S L J, MURPHY A. Modelling and analysis of simulated lightning strike tests: a review[J]. Com-posite Structures, 2021, 274: 114347. [16] 谷山强, 谢施君, 向念文, 等. 长间隙正极性放电流注-先导发展3维物理仿真研究[J]. 高电压技术, 2014, 40(9): 2903-2910. [17] 张文锋, 李志伟, 张国建, 等. 山区35kV架空线路雷击特性仿真分析[J]. 电气技术, 2022, 23(9): 19-28. [18] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. [19] JANG K H, SEO S W, KIM D J.A study on electric potential and electric field distribution for optimal design of lightning rod using finite element method[J]. Mathematics, 2023, 11(7): 1668. [20] 裴哲浩, 陈维江, 陈家宏, 等. 避雷针端部曲率半径对雷击接闪效能的影响[J]. 高电压技术, 2022, 48(9): 3636-3642. [21] ANDREOTTI A, ARANEO R, FARIA J B, et al.On the role of shield wires in mitigating lightning-induced overvoltages in overhead lines-part Ⅰ: a critical review and a new analysis[J]. IEEE Transactions on Power Delivery, 2023, 38(1): 335-344. [22] 刘继永, 李威龙. 调整接触网避雷线保护角降低雷电绕击概率的研究[J]. 华东交通大学学报, 2021, 38(6): 61-66. [23] 王俊, 汪涛, 骆仁松, 等. 用于直流可控避雷器的晶闸管控制单元设计[J]. 高压电器, 2024, 60(6): 121-128. [24] SABIHA N A.Limiting surge arrester failure under direct lightning strokes for attaining service continuity of distribution networks[J]. IET Generation, Trans-mission & Distribution, 2020, 14(21): 4796-4804. [25] SENGAR K P, CHANDRASEKARAN K.Transient analysis of earthing electrodes considering soil ionization phenomenon under lightning impulse condition[J]. Electrical Engineering, 2024, 106(3): 3083-3096. [26] MOHAMAD NASIR N A F, AB KADIR M Z A, OSMAN M, et al. Impact of earthing system designs and soil characteristics on tower footing impedance and ground potential rise: a modelling approach for sustainable power operation[J]. Sustainability, 2021, 13(15): 8370. [27] CARPENTER R B, AUER R L.Lightning and surge protection of substations[J]. IEEE Transactions on Industry Applications, 1995, 31(1): 162-170. [28] GOLDE R H.Lightning[M]. London, Britain: Academic Press, 1977: 567-569. [29] 翟明翰, 杜忠东, 谭进, 等. 新型防雷装置: 导体消雷器[J]. 高电压技术, 1994, 20(4): 69-71. [30] 薛东华. 导体消雷器的作用和其保护范围[J]. 高电压技术, 1990, 16(3): 71-74. [31] 张云芳, 堀井宪尔. 针电极在雷云电场下电晕电流的研究[J]. 中国电机工程学报, 1993, 13(2): 55-59. [32] 游镇强. 加装半导体消雷器的防雷效果[J]. 高电压技术, 1993, 19(4): 39-43. [33] MOUSA A M.The applicability of lightning elimi-nation devices to substations and power lines[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1120-1127. [34] 应洪正. 消雷器与避雷针防雷特性的对比试验[J]. 电网技术, 1996, 20(8): 20-25. [35] 康国耀, 刘刚, 丁振东, 等. 基于等离子体主动防御的雷电综合防护措施[J]. 机电工程技术, 2023, 52(10): 338-342. [36] 王赞东. 有源等离子防雷装置[J]. 现代建筑电气, 2018, 9(2): 36-38. [37] 汤季宇, 黄亚峰. 基于均匀电场的消雷器应用效果分析研究[J]. 电气应用, 2023, 42(8): 77-84. [38] 张龙飞. 全金属多针“消雷器”基础问题研究[D].哈尔滨: 哈尔滨理工大学, 2020. [39] CHRZAN K L.Early streamer emission terminals from the high voltage engineering perspective[C]//The 21st International Symposium on High Voltage Engin-eering, Xi’an, 2021. [40] 彭向阳, 文习山, 魏俊涛, 等. 可控放电避雷针对引雷塔引雷能力的影响研究[J]. 电瓷避雷器, 2020(4): 120-126. [41] PECASTAING L, REESS T, DE FERRON A, et al.Experimental demonstration of the effectiveness of an early streamer emission air terminal versus a Franklin rod[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 789-798. [42] 潘向荣, 赵志强. 可控放电避雷针防雷系统在莲花坝体的应用[J]. 黑龙江电力, 2011, 33(2): 154-157. [43] 吕金煌, 王宏其, 黄金聪. 可控放电避雷针在高压输电线路上的应用[J]. 高电压技术, 2003, 29(11): 59-60. [44] OZDERMIR A, ILHAN S.Experimental performance analysis of conventional and non-conventional light-ning protection systems-preliminary results[J]. Electric Power Systems Research, 2023, 216: 109080. [45] ZHUANG Chijie, WANG Zezhong, ZENG Rong.Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 051001. [46] COORAY V.The similarity of the action of Franklin and ESE lightning rods under natural conditions[J]. Atmosphere, 2018, 9(6): 225. [47] BECERRA M, COORAY V.Laboratory experiments cannot be utilized to justify the action of early streamer emission terminals[J]. Journal of Physics D: Applied Physics, 2008, 41(8): 085204. [48] 裴哲浩, 陈维江, 陈家宏, 等. 不同类型避雷针雷击接闪效能差异的实验评价方法[J]. 高电压技术, 2021, 47(11): 3854-3862. [49] NEWMAN M M.Lightning discharge channel chara-cteristics and related atmospherics[M]//Recent Advances in Atmospheric Electricity, New York, America: Per-gamon Press, 1958: 475-484. [50] BROOK M, ARMSTRONG G, WINDER R P H, et al. Artificial initiation of lightning discharges[J]. Journal of Geophysical Research, 1961, 66(11): 3967-3969. [51] NEWMAN M M.Use of triggered lightning to study the discharge process in the channel and application to V.L.F. propagation studies[M]//Problems of Atmo-spheric and Space Electricity, New York, America: Elsevier, 1965: 482-490. [52] NEWMAN M M, STAHMANN J R, ROBB J D, et al.Triggered lightning strokes at very close range[J]. Journal of Geophysical Research, 1967, 72(18): 4761-4764. [53] FIEUX R, GARY C, HUBERT P.Artificially triggered lightning above land[J]. Nature, 1975, 257: 212-214. [54] 夏雨人, 肖庆复, 吕永振. 人工触发闪电的试验研究[J]. 大气科学, 1979, 3(1): 94-97. [55] CAI Li, CHU Wangxiang, FAN Wenchao, et al.Obser-vation and simulation of dart leader-M component process in rocket-triggered lightning[J]. Atmospheric Research, 2024, 310: 107615. [56] 李宗祥, 蒋如斌, 吕冠霖, 等. 人工引发闪电上行负先导的发展传输特征[J]. 物理学报, 2021, 70(19): 344-357. [57] 蔡力, 杜懿阳, 彭向阳, 等. 火箭触发闪电的回击电流及电场特征分析[J]. 电工技术学报, 2024, 39(1): 257-266. [58] SCHOENE J, UMAN M A, RAKOV V A, et al.Chara-cterization of return-stroke currents in rocket-triggered lightning[J]. Journal of Geophysical Research: Atmo-spheres, 2009, 114(D3): D03106. [59] BAGHERI M, DWYER J R, MCCONNELL M L.On the linear polarization of TGFs and X-rays from natural and rocket-triggered lightning and its association with source geometry[J]. Journal of Geophysical Research: Space Physics, 2019, 124(11): 9166-9183. [60] 张雄, 李小强, 张阳, 等. 人工触发闪电高能辐射特征及其与放电参量的关系[J]. 中国科学: 地球科学, 2023, 53(3): 613-627. [61] WANG D, GAMEROTA W R, UMAN M A, et al.Lightning attachment processes of an “anomalous” triggered lightning discharge[J]. Journal of Geophy-sical Research: Atmospheres, 2014, 119(3): 1524-1533. [62] 蔡力, 储汪祥, 韦道明, 等. 人工触发闪电箭式先导和企图先导光电同步观测与模拟[J]. 电工技术学报, 2023, 38(增刊1): 177-186. [63] CAI Li, XU Changfeng, WANG Jianguo, et al.Three-phase overvoltage induced on overhead distribution line 40 m from rocket-triggered lightning[J]. IEEE Transactions on Power Delivery, 2023, 38(6): 3782-3791. [64] 刘向科, 任渝帆, 蒋如斌, 等. 基于人工引雷技术的外浮顶油罐直接雷击过电压试验研究[J]. 高电压技术, 2023, 49(11): 4782-4789. [65] BALL L M.The laser lightning rod system: thunderstorm domestication[J]. Applied Optics, 1974, 13(10): 2292-2295. [66] 鲁欣, 张喆, 郝作强, 等. 激光引雷研究中的若干基础物理问题[J]. 高电压技术, 2008, 34(10): 2059-2064. [67] STRICKLAND D, MOUROU G.Compression of amplified chirped optical pulses[J]. Optics Commu-nications, 1985, 56(3): 219-221. [68] BRAUN A, KORN G, LIU X, et al.Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75. [69] ARANTCHOUK L, HONNORAT B, THOUIN E, et al.Prolongation of the lifetime of guided discharges triggered in atmospheric air by femtosecond laser filaments up to 130 μs[J]. Applied Physics Letters, 2016, 108: 173501. [70] 滕浩, 鲁欣, 沈忠伟, 等. 野外环境下太瓦飞秒激光等离子体通道特性研究[J]. 量子电子学报, 2020, 37(5): 513-523. [71] PRODUIT T, WALCH P, SCHIMMEL G, et al.HV discharges triggered by dual-and triple-frequency laser filaments[J]. Optics Express, 2019, 27(8): 11339-11347. [72] 白晗, 刘峰, 任成燕, 等. 激光等离子体引导空气间隙放电的实验研究[J]. 高压电器, 2017, 53(4): 13-17. [73] FORESTIER B, HOUARD A, REVEL I, et al.Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament[J]. AIP Advances, 2012, 2(1): 012151. [74] BARNES A A, BERTHEL R O.A survey of laser lightning rod techniques[C]//The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, Florida, USA, 1991. [75] YAMANAKA T, UCHIDA S, SHIMADA Y, et al.First observation of laser-triggered lightning[J]. Pro-ceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), High-Power Laser Ablation, 1998, 3343: 281-288. [76] UCHIDA S, SHIMADA Y, YASUDA H, et al.Laser-triggered lightning in field experiments[J]. Journal of Optical Technology, 1999, 66(3): 199-202. [77] WILLE H, RODRIGUEZ M, KASPARIAN J, et al.Teramobile: a mobile femtosecond-terawatt laser and detection system[J]. European Physical Journal App-lied Physics, 2002, 20(3): 183-190. [78] KASPARIAN J, ACKERMANN R, ANDRE Y B, et al.Electric events synchronized with laser filaments in thunderclouds[J]. Optics Express, 2008, 16(8): 5757-5763. [79] PRODUIT T, WALCH P, HERKOMMER C, et al.The laser lightning rod project[J]. The European Physical Journal Applied Physics, 2021, 93(1): 10504. [80] HOUARD A, WALCH P, PRODUIT T, et al.Laser-guided lightning[J]. Nature Photonics, 2023, 17(3): 231-235. [81] SHIHO M, WATANABE A, KAWASAKI S, et al.Lightning control system using high power microwave FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 375(1/2/3): 396-400. [82] HORII K, NAKANO M.Artificially triggered light-ning[M]//Handbook of Atmospheric Electrodynamics, Boca Raton, Florida: CRC Press, 1995: 151-166. [83] WATANABE T, TAKAGI T, WANG D, et al.Feasi-bility study on triggering lightning with a transient flame[C]//10th International Conference on Atmo-spheric Electricity, Osaka, Japan, 1996: 248-251. [84] 程海涛, 孔令宇, 王泽昭, 等. 电力行业无人机典型应用的服务模式和创新研究[J]. 应用科技, 2024, 51(5): 197-205. [85] 马钲, 兰璐. 应用于超(特)高压输电线路智能巡检无人机的技术研究[J]. 电气应用, 2024, 43(7): 21-26. [86] 中国科学技术大学. 一种基于无人机平台的人工引雷系统及其引雷方法[P]. 中国: CN202211431944.5, 2023-02-03. [87] 厦门雷神电气设备有限公司. 机动式便携智能防雷系统及其方法[P]. 中国: CN202210492372.5, 2022-08-02.