研究与开发
|
基于Sepic-Cuk的零纹波双极性输出直流变换器
陈柯旭, 林国庆
福州大学福建省新能源发电与电能变换重点实验室,福州 350116
Research on zero-ripple bipolar output DC-DC converter based on Sepic-Cuk topology
CHEN Kexu, LIN Guoqing
Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, Fuzhou 350116
摘要 随着光伏发电、燃料电池等新能源更多地接入电网,双极性直流微电网优势愈发显著。针对变换器输入电流纹波较大、输出增益较低等不足,研制一种基于Sepic-Cuk结构的零纹波双极性输出直流变换器。该变换器共用输入电感和开关管,将Sepic和Cuk变换器集成,并根据两种变换器输出电压增益大小相同且极性相反的特点,实现双极性对称电压输出。采用电容钳位技术抑制输入电流纹波,引入耦合电感提高输出电压以解决增益不足问题。对其展开系统性分析,阐释工作原理、分析纹波抑制机理,并针对关键参数进行工程设计。最后,研制出一台额定功率130 W、开关频率为100 kHz、输入电压为40 V且总输出电压为360 V(±180 V)的实验样机。实验样机的各输出电压实测值与理论计算结果基本吻合,转换效率达到96.1%,证明了该变换器的有效性与可行性。
关键词 :
零纹波 ,
电容钳位 ,
Sepic-Cuk ,
直流变换器 ,
耦合电感
Abstract :With increasing integration of renewable energy sources like photovoltaics and fuel cells into power grids, bipolar DC microgrids have shown significant advantages. To overcome limitations such as high input current ripple and low voltage gain in conventional converters, a zero-ripple bipolar DC-DC converter based on a Sepic-Cuk structure is proposed. The converter combines Sepic and Cuk topologies using shared inductors and switches, achieving symmetrical bipolar output by utilizing their complementary voltage gain characteristics. Capacitor clamping reduces input current ripple, while coupled inductors increase voltage gain. The converter is analyzed systematically, covering operating principles, ripple suppression, and key parameter design. A prototype rated at 130 W, with a switching frequency of 100 kHz, an input voltage of 40 V, and a total output voltage of 360 V (±180 V), is built and tested. The measured output voltages show close agreement with theoretical calculations, and a conversion efficiency of 96.1% is achieved, confirming the effectiveness and feasibility of the proposed converter.
Key words :
zero ripple
capacitor clamp
Sepic-Cuk
DC-DC converter
coupled inductance
收稿日期: 2025-08-29
基金资助: 晋江市福大科教园区发展中心科研项目(2019-JJFDKY-37)
作者简介 : 陈柯旭(2000—),男,硕士研究生,研究方向为电力电子变流技术。
引用本文:
陈柯旭, 林国庆. 基于Sepic-Cuk的零纹波双极性输出直流变换器[J]. 电气技术, 2026, 27(2): 25-31.
CHEN Kexu, LIN Guoqing. Research on zero-ripple bipolar output DC-DC converter based on Sepic-Cuk topology. Electrical Engineering, 2026, 27(2): 25-31.
链接本文:
https://dqjs.cesmedia.cn/CN/Y2026/V27/I2/25
[1] 白桦, 王正用, 李晨, 等. 面向电网侧、新能源侧及用户侧的储能容量配置方法研究[J]. 电气技术, 2021, 22(1): 8-13. [2] 武平, 郭巍, 晋春杰, 等. 浅谈我国电力与能源现状及解决途径[J]. 电气技术, 2018, 19(5): 1-4. [3] 邹才能, 熊波, 李士祥, 等. 碳中和背景下世界能源转型与中国式现代化能源革命[J]. 石油科技论坛, 2024, 43(1): 1-17. [4] 周明珠, 刘超, 庄一展, 等. 一种非隔离型双极性输出DC-DC变换器合成方法[J]. 电工技术学报, 2025, 40(12): 3953-3963. [5] Pires V F, Cordeiro A, Roncero-Clemente C, et al.DC-DC converters for bipolar microgrid voltage balancing: a comprehensive review of architectures and topologies[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 981-998. [6] 裴忠晨, 宋晓民, 刘闯, 等. 适用于双极性低压直流微电网的自平衡隔离型DC-DC变换器[J]. 电力自动化设备, 2022, 42(5): 47-53. [7] Ren Quan, Han Yang, Zhou Meng, et al.Overview of voltage balancing schemes in bipolar DC micro-grids[J]. IEEE Transactions on Power Electronics, 2025, 40(2): 3469-3489. [8] Farsijani M, Abbasian S, Hafezi H, et al.A high step-up cost effective DC-to-DC topology based on three-winding coupled-inductor[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4(1): 50-59. [9] 桑汐坤, 王懿杰, 徐殿国. 基于输入并联输出串联的高效高升压比DC-DC变换器[J]. 电工技术学报, 2023, 38(20): 5488-5502. [10] 丁新平, 曹益畅, 赵振伟, 等. 输入电流低纹波的超高增益非隔离DC-DC变换器[J]. 中国电机工程学报, 2023, 43(6): 2359-2371. [11] 余振海, 胡雪峰, 徐紫俊, 等. 单开关高增益低电压应力直流变换器[J]. 电气技术, 2022, 23(7): 34-41. [12] 管乐诗, 温兆亮, 许晓志, 等. 适用于宽增益范围的可重构单级DC-DC变换器及其磁元件设计[J]. 电工技术学报, 2023, 38(6): 1571-1583. [13] 王哲, 李驰, 郑泽东, 等. 一种基于耦合电感的高增益软开关谐振变换器[J]. 电工技术学报, 2024, 39(1): 194-205. [14] 王建, 林国庆. 一种低电流纹波高增益软开关直流变换器[J]. 电源学报, 2024, 22(2): 36-46. [15] Kim H S, Jung J H, Baek J W, et al.Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel-series transformer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3115-3125. [16] Kolincio M, Chrzan P J, Musznicki P.Multitrans-former primary-side regulated flyback converter for supplying isolated IGBT and MOSFET drivers[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1005-1012. [17] Prasad S, Mandal S, Prabhakaran P, et al.A novel input-parallel output-series SEPIC-Cuk converter for bipolar voltage balancing[C]//2023 IEEE 2nd Indu-strial Electronics Society Annual On-Line Conference (ONCON), SC, USA, 2023: 1-6. [18] Zhou Xiang, Wang Yue, Wang Laili, et al.A soft-switching transformerless DC-DC converter with single-input bipolar symmetric outputs[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8640-8646. [19] Nathan K, Ghosh S, Siwakoti Y, et al.A new DC-DC converter for photovoltaic systems: coupled-inductors combined Cuk-SEPIC converter[J]. IEEE Transactions on Energy Conversion, 2019, 34(1): 191-201. [20] 丁杰, 高双, 赵世伟, 等. 基于耦合电感的对称式交错并联低输入电流纹波高增益DC-DC变换器[J]. 电工技术学报, 2021, 36(7): 1507-1515. [21] 郭瑞, 郭佳, 王国翰. 一种高增益零输入电流纹波Sepic变换器[J]. 电气工程学报, 2023, 18(4): 199-208. [22] Mandal S, Prabhakaran P.A novel nonisolated high-gain boost DC-DC converter with single switch and minimum component count[C]//2024 Third Inter-national Conference on Power, Control and Com-puting Technologies (ICPC2T), Raipur, India, 2024: 529-534. [23] Chapparya V, Dey A, Singh S P.A novel nonisolated Boost-Zeta interleaved DC-DC converter for low voltage bipolar DC micro-grid application[J]. IEEE Transactions on Industry Applications, 2023, 59(5): 6182-6192. [24] Zhang Yun, Zhou Lei, Summer M, et al.Single-switch, wide voltage-gain range, boost DC-DC converter for fuel cell vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 134-145.
[1]
黄嬿婉, 杨用春, 梁海峰. 基于模块化多电平换流器的多端口交直流变换器仿真研究 [J]. 电气技术, 2020, 21(11): 13-18.
[2]
张涛, 朱小平. 基于LLC变换器的电动汽车充电机设计 [J]. 电气技术, 2016, 17(6): 97-100.
[3]
张涛, 朱小平. 基于直流-直流变换器的高精度电池模拟器设计 [J]. 电气技术, 2014, 15(11): 33-36.
[4]
王旭峰,董旭,杨振国,蔺得林. 具有再生反馈能力的可控直流负载研究 [J]. 电气技术, 2014, 15(01): 34-37.