|
|
Summary of artificial intelligence prediction model for single wind power |
Guo Qian, Kuang Honghai, Wang Jianhui, Zhou Yujian, Gao Runguo |
Hu’nan University of Technology, Zhuzhou, Hu’nan 412007 |
|
|
Abstract Wind power prediction of a single wind turbine based on historical data of wind speed of the wind turbine hub. The high proportional relationship between wind speed and power makes the power dispatching system have higher requirements for wind power prediction accuracy. The wind speed has gap-volatility and randomness, which makes the wind sequences exhibit strong non-linearity. Artificial intelligence has an advantage in dealing with the problem, and it is beneficial to single- machine wind power forecasting modeling. This paper introduces the establishment process of predictive model based on artificial neural network and support vector machine, and expounds the application and characteristics of artificial intelligence method such as fuzzy logic in single-machine wind power prediction, some problems existing in single wind power prediction models are discussed, and some insights on improving the performance of the single wind power prediction model are presented.
|
Received: 17 June 2018
Published: 27 February 2020
|
|
|
|
Cite this article: |
Guo Qian,Kuang Honghai,Wang Jianhui等. Summary of artificial intelligence prediction model for single wind power[J]. Electrical Engineering, 2020, 21(2): 1-6.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2020/V21/I2/1
|
[1] 吴飞, 阳春华, 兰旭光, 等. 人工智能的回顾与展望[J]. 中国科学基金, 2018, 32(3): 243-250. [2] 清洁能源消纳行动计划(2018—2020年)[J]. 中国电力企业管理, 2018(34): 7-8. [3] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326. [4] 苏赞, 王维庆, 王健波, 等. 风电功率预测准确性分析[J]. 电气技术, 2012, 13(3): 1-5. [5] Vargas S A, Telles Esteves G R, Macaira P M, et al. Wind power generation: a review and a research agenda[J/OL]. Journal of Cleaner Production, 2019, 218: 850-870. [6] 卿湘运, 杨富文, 王行愚. 采用贝叶斯-克里金-卡尔曼模型的多风电场风速短期预测[J]. 中国电机工程学报, 2012, 32(35): 107-114. [7] Botterud A, Zhou Zhi, Wang Jianhui, et al.Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: a case study of illinois[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 250-261. [8] 黎静华, 桑川川, 甘一夫, 等. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11. [9] 崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2): 110-114. [10] 杨俊友, 崔嘉, 邢作霞, 等. 考虑风电功率预测的分散式风电场无功控制策略[J]. 电力系统自动化, 2015, 39(13): 8-15. [11] 崔嘉, 杨俊友, 邢作霞, 等. 基于单机最优功率曲线拟合的多场景风电功率预测方法[J]. 电力系统自动化, 2015, 39(16): 23-28, 42. [12] 叶林, 任成, 李智, 等. 风电场有功功率多目标分层递阶预测控制策略[J]. 中国电机工程学报, 2016, 36(23): 6327-6336. [13] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. [14] Wang H Z, Wang G B, Li G Q, et al.Deep belief network based deterministic and probabilistic wind speed forecasting approach[J]. Applied Energy, 2016, 182(C): 80-93. [15] Wang J, Zhang W, Li Y, et al.Forecasting wind speed using empirical mode decomposition and Elman neural network[J]. Applied Soft Computing, 2014, 23: 452-459. [16] Doucoure B, Agbossou K, Cardenas A.Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data[J]. Renewable Energy, 2016, 92: 202-211. [17] Wang Huaizhi, Li Gangqiang, Wang Guibin, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 2017, 188: 56-70. [18] 陈道君, 龚庆武, 金朝意, 等. 基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J]. 电网技术, 2013, 37(4): 974-980. [19] 程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J]. 电力自动化设备, 2018, 38(5): 27-35. [20] 李国庆, 张钰, 张明江, 等. 基于MRMR的集合经验模态分解和支持向量机的风电功率实时预测[J]. 东北电力大学学报, 2017, 37(2): 39-44. [21] 杨茂, 黄宾阳, 江博, 等. 基于卡尔曼滤波和支持向量机的风电功率实时预测研究[J]. 东北电力大学学报, 2017, 37(2): 45-51. [22] 丁志勇, 杨苹, 杨曦, 等. 基于连续时间段聚类的支持向量机风电功率预测方法[J]. 电力系统自动化, 2012, 36(14): 131-135, 149. [23] Kusiak A, Zhang Zijun.Short-horizon prediction of wind power: a data-driven approach[J]. IEEE Transa- ctions on Energy Conversion, 2010, 25(4): 1112-1122. [24] Dimitris Zafirakis, Georgios Tzanes, John K.Kaldellis. Forecasting of wind power generation with the use of artificial neural networks and support vector regression models[J]. Energy Procedia, 2018, 159: 509-514. [25] 杨茂, 杨春霖. 基于模糊粒计算的风电功率实时预测研究[J]. 东北电力大学学报, 2017, 37(5): 1-7. [26] 刘长良, 曹威, 王梓齐. 基于模糊C均值软聚类工况辨识的风电功率短期区间预测[J]. 华北电力大学学报: 自然科学版, 2019(5): 83-91. [27] 杨志凌, 刘永前. 应用粒子群优化算法的短期风电功率预测[J]. 电网技术, 2011, 35(5): 159-164. [28] 吴金浩, 杨秀媛, 孙骏. 基于主成分分析法的风电功率短期组合预测[J]. 电气技术, 2016, 17(7): 41-47. [29] 吴世伟, 刘文彪, 纪陵, 等. 新能源发电功率预测系统数据流容错研究[J]. 电气技术, 2018, 19(12): 107-111. |
|
|
|