|
|
Analysis of trip causes of interturn protection of HV reactor caused by circuit breaker failure |
Liu Huanqing1, Nan Dongliang1, Wang Longlong2, Tang Xiaobing3, Zhang Lu1 |
1. Electric Power Research Institute State Grid Xinjiang Electric Power Co., Ltd, Urumqi 830011; 2. Xinjiang Power Transmission and Transformation Co., Ltd, Urumqi 830000; 3. Nanjing SP-NICE Technology Development Co., Ltd, Nanjing 211153 |
|
|
Abstract This paper combines a case of a circuit breaker trip of a high-voltage reactor in a substation and looks for it from three aspects of primary equipment, secondary equipment, and protection principles. Due to the long service life of the equipment and the frequent opening and closing of the high-voltage reactor circuit breaker during maintenance, Causes circuit breaker spring weakness and high-voltage reactor interturn protection trip. By adjusting the spring compression of the circuit breaker to meet the requirements of the circuit breaker's switching characteristics, it provides a reference for the field personnel to operate and maintain the old equipment, analyze and deal with similar failures, avoid such events, and ensure normal power transmission.
|
Received: 06 March 2020
|
|
|
|
Cite this article: |
Liu Huanqing,Nan Dongliang,Wang Longlong等. Analysis of trip causes of interturn protection of HV reactor caused by circuit breaker failure[J]. Electrical Engineering, 2020, 21(10): 127-132.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2020/V21/I10/127
|
[1] 张晗, 蔡延雷. 一起500kV变电站干式空心电抗器故障原因分析[J]. 电力电容器与无功补偿, 2016, 37(1): 47-50. [2] 魏敏. 一起35kV空心电抗器故障原因分析及预防措施[J]. 电气技术, 2017, 18(3): 143-147. [3] 巫世晶, 孟凡刚, 赵文强, 等. 特高压断路器机械传动机构动态特性优化[J]. 高电压技术, 2018, 44(3): 727-732. [4] 周国伟, 董建新, 肖珊珊, 等. 合闸弹簧疲劳状态下高压断路器弹簧操作机构应力分布及动力响应研究[J]. 高压电器, 2019, 55(10): 44-51. [5] Iberraken F, Medjoudj R, Medjoudj R, et al.Com- bining reliability attributes to maintenance policies to improve high-voltage oil circuit breaker performances in the case of competing risks[J]. Proceedings of the Institution of Mechanical Engineers Part O Journal of Risk&Reliability, 2015, 229. [6] 肖珊珊. 高压断路器弹簧操作机构故障状态下应力分布特性分析[D]. 北京: 华北电力大学, 2018. [7] 王昱皓, 武建文, 马速良, 等. 基于核主成分分析- SoftMax的高压断路器机械故障诊断技术研究[J]. 电工技术学报, 2020, 35(增刊1): 267-276. [8] 孟晓承, 韩学山, 许易经, 等. SF6高压断路器机械故障概率的非精确条件估计[J]. 电工技术学报, 2019, 34(4): 693-702. [9] 王嘉易, 翁钰, 贾志杰, 等. 一起断路器绝缘拉杆松动事故分析及防范措施研究[J]. 四川电力技术, 2018, 41(5): 73-75, 94. [10] 陈强. 断路器液压弹簧操作机构故障分析及处理[J]. 电气技术, 2017, 18(8): 122-124, 128. [11] 齐伟强, 田翠华, 董健鹏, 等. 基于不平衡度差值的并联电抗器匝间短路故障检测方法研究[J]. 电力电容器与无功补偿, 2019, 40(5): 110-115. [12] 周金刚, 周伟, 肖凯还, 等. 一种并联高压电抗器匝间保护的整定计算与校验[J]. 电力建设, 2010, 31(8): 29-31. [13] 李建基. 高压断路器及应用[M]. 北京: 中国电力出版社, 2004. [14] 孟凡刚, 巫世晶, 贾俊峰, 等. 考虑间隙的弹塑性断路器弹簧操动机构动力学特性研究[J]. 西安交通大学学报, 2016, 50(7): 75-82. [15] 黎小峰, 巫世晶, 李小勇, 等. 考虑弹簧应力松弛的高压断路器运动特性[J]. 中南大学学报: 自然科学版, 2019, 50(7): 1575-1583. [16] LW38—252/T4000—50型自能式六氟化硫断路器使用说明书[Z]. 河南平高电气有限股份公司. |
|
|
|