|
|
Research on optimal allocation method of hierarchical energy storage system in metal processing area |
ZHANG Xiaoyan, LI Xianyun |
School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167 |
|
|
Abstract With the continuous development of urban distribution network and new energy technology, problems such as heavy overload of substations, peaking and valley difference of power grid load, and insufficient absorption of new energy are becoming more and more serious. In view of the existing problems of distribution network, the centralized and large capacity energy storage system is firstly considered in substation nodes to give full play to the effect of peak cutting and valley filling. Secondly, the distributed and small capacity energy storage system is configured at the user node to promote the photovoltaic absorption, and the hierarchical energy storage optimization configuration model is established. Finally, the model is applied to a metal processing area, and the economy and effectiveness of the model are verified by simulation. The simulation results show that the established hierarchical energy storage system effectively reduces the peak-valley difference of substation load curve, promotes the photovoltaic absorption in the park, and reduces the annual comprehensive cost of users.
|
Received: 23 August 2021
|
|
|
|
Cite this article: |
ZHANG Xiaoyan,LI Xianyun. Research on optimal allocation method of hierarchical energy storage system in metal processing area[J]. Electrical Engineering, 2022, 23(1): 49-55.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2022/V23/I1/49
|
[1] 郭国伟, 刘鹏祥, 徐欣慰, 等. 含可再生能源的配网中储能容量优化配置方法及软件设计[J]. 电气技术, 2020, 21(4): 56-60. [2] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. [3] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10, 20. [4] 尤毅, 刘东, 钟清, 等. 主动配电网储能系统的多目标优化配置[J]. 电力系统自动化, 2014, 38(18): 46-52. [5] HILL C A, SUCH M C, CHEN Dongmei, et al.Battery energy storage for enabling integration of distributed solar power generation[J]. IEEE Transactions on Smart Grid, 2012, 3(2): 850-857. [6] ZHANG Feng, ZHAO Xu, KE Meng.Optimal sizing of substation-scale energy storage station considering seasonal variations in wind energy[J]. IET Generation, Transmission & Distribution, 2016, 10(13): 3241-3250. [7] 修晓青, 李建林, 惠东. 用于电网削峰填谷的储能系统容量配置及经济性评估[J]. 电力建设, 2013, 34(2): 1-5. [8] 彭政, 崔雪, 王恒, 等. 考虑储能和需求侧响应的微网光伏消纳能力研究[J]. 电力系统保护与控制, 2017, 45(22): 63-69. [9] 全慧. 分层储能系统选点布局与配置方法研究[D].北京: 中国电力科学研究院, 2018. [10] 白桦, 王正用, 李晨, 等. 面向电网侧、新能源侧及用户侧的储能容量配置方法研究[J]. 电气技术, 2021, 22(1): 8-13. [11] 邓凯. 基于分层分区的分布式储能优化配置研究[D].南京: 南京师范大学, 2020. [12] QIAO Zhi, JIN Yang.Comparison of centralised and distributed battery energy storage systems in LV distribution networks on operational optimisation and financial benefits[J]. Engineering, 2017, 13(1): 1671-1675. [13] 邵泓钦. 基于储能装置不同接入方式的微电网控制策略与运行特性研究[D]. 成都: 西南交通大学, 2013. [14] 叶季蕾. 储能的集中式/分布式应用[J]. 电气应用, 2017, 36(11): 15-16. [15] 黄际元, 杨俊, 黎淑娟, 等. 电池储能系统参与配电网调峰的选址定容方法[J]. 电器与能效管理技术, 2018(17): 18-23. [16] 孟娅, 李欣然, 黎淑娟, 等. 电池储能参与配电网削峰填谷的变功率控制策略[J]. 电力建设, 2018, 39(4): 45-50. [17] 谢桦, 滕晓斐, 张艳杰, 等. 风/光/储微网规划经济性影响因素分析[J]. 电力系统自动化, 2019, 43(6): 70-76, 115. [18] 吴志明. 含高渗透率光伏发电的电力系统多元储能优化配置研究[D]. 武汉: 华中科技大学, 2018. |
|
|
|