|
|
Non-intrusive load monitoring based on color coding and harmonic feature fusion |
ZAI Zhoupeng1, ZHAO Sheng1,2, ZHU Xiang'ou1, ZHANG Zhengjiang1, DONG Fanqi1 |
1. School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, Zhejiang 325035; 2. Technology Institute of Wenzhou University in Yueqing, Yueqing, Zhejiang 325600 |
|
|
Abstract Non-intrusive load monitoring (NILM), as the main way to analyze user's electricity consumption behavior, is of great significance to carry out energy consumption monitoring and realize electricity safety assessment. Aiming at the problem that the identification accuracy of the original voltage-current (V-I) trajectory features is not high, a recognition method based on the color coding of V-I trajectory features and the fusion of load high-order harmonic features is proposed in this paper. First, the high-frequency sampling data is preprocessed to extract the V-I trajectory and high-order harmonic characteristics of the load, and the numerical characteristics of instantaneous reactive power, power factor and current sequence distribution are mapped to the three channel pixel matrix of RGB color image by using color coding technology. Then, the high-order harmonic features are introduced and fused with three channel pixel matrix to form a mixed color image. Finally, the transfer learning of AlexNet network is used to train and classify the loads, which is verified by the PLAID data set and the measured data. The identification accuracy of the proposed load identification method is more than 95%, and the model has good generalization ability, which can be used for electricity safety management in home and similar occasions.
|
Received: 10 August 2022
|
|
|
|
Cite this article: |
ZAI Zhoupeng,ZHAO Sheng,ZHU Xiang'ou等. Non-intrusive load monitoring based on color coding and harmonic feature fusion[J]. Electrical Engineering, 2022, 23(12): 9-16.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2022/V23/I12/9
|
[1] 郑晓芳, 黄鹿鸣, 傅军栋. 基于元胞自动机的建筑火灾预测与疏散系统[J]. 华东交通大学学报, 2020, 37(2): 122-128. [2] 徐扬, 张紫涛. 基于遗传模拟退火算法改进BP神经网络的中长期电力负荷预测[J]. 电气技术, 2021, 22(9): 70-76. [3] 周东国, 张恒, 周洪, 等. 基于状态特征聚类的非侵入式负荷事件检测方法[J]. 电工技术学报, 2020, 35(21): 4565-4575. [4] 雷怡琴, 孙兆龙, 叶志浩, 等. 电力系统负荷非侵入式监测方法研究[J]. 电工技术学报, 2021, 36(11): 2288-2297. [5] 朱德省, 尹建丰, 周琨荔. 非侵入式电力负荷的辨识和监测[J]. 电测与仪表, 2015, 52(增刊1): 133-138. [6] 曲朝阳, 于华涛, 郭晓利. 基于开启瞬时负荷特征的家电负荷识别[J]. 电工技术学报, 2015, 30(增刊1): 358-364. [7] BHOTTO M Z A, MAKONIN S, BAJIC I V. Load disaggregation based on aided linear integer pro- gramming[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(7): 792-796. [8] 王玲, 李俐, 朱翔鸥, 等. 基于粒子群算法的强迫风冷散热器多目标优化[J]. 电气技术, 2022, 23(2): 20-25. [9] 李葱. 基于深度学习优化的非侵入式负荷监控算法研究[D]. 武汉: 华中科技大学, 2017. [10] YU Miao, WANG Bingnan, LU Lingxia, et al.Non- intrusive adaptive load identification based on Siamese network[J]. IEEE Access, 2022, 10: 11564-11573. [11] 岳建任, 宋亚奇, 杨丹旭, 等. 基于seq2seq模型的非侵入式负荷分解算法[J/OL]. 电测与仪表, http:// kns.cnki.net./kcms/detail/23.1202.TH.20210705.1100.005.html. [12] 杨云瑞, 黄宇魁, 陈文浩. 基于V-I轨迹特征的非侵入式负荷监测算法[J]. 计算机与数字工程, 2020, 48(10): 2353-2358. [13] 陈小闽. 非侵入式负荷分解技术及应用研究[D]. 广州: 华南理工大学, 2018. [14] DU Liang, HE Dawei, HARLEY R G, et al.Electric load classification by binary voltage-current trajectory mapping[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 358-365. [15] LIU Yanchi, WANG Xue, YOU Wei.Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5609-5619. [16] 郇嘉嘉, 汪超群, 洪海峰, 等. 基于图像编码与深度学习的非侵入式负荷识别方法[J]. 科学技术与工程, 2021, 21(21): 8901-8908. [17] 崔昊杨, 蔡杰, 陈磊, 等. 基于颜色编码的非侵入式负荷细粒度识别方法[J]. 电网技术, 2022, 46(4): 1557-1565. [18] 郭鸿浩, 曹睿, 林欣欣, 等. 非理想磁链永磁同步电机转矩脉动抑制[J]. 电机与控制学报, 2022, 26(2): 63-71. [19] 裘星, 尹仕红, 张之涵, 等. 基于V-I轨迹与高次谐波特征的非侵入式负荷识别方法[J]. 电力工程技术, 2021, 40(6): 34-42. [20] 郇嘉嘉, 汪超群, 洪海峰, 等. 基于双通道多特征融合的电力负荷智能感知方法[J]. 科学技术与工程, 2021, 21(13): 5360-5368. [21] LIN Y H,TSAI M S.An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1839-1851. [22] 安琪, 王占彬, 安国庆, 等. 基于随机森林-遗传算法-极限学习机的非侵入式负荷识别方法[J]. 科学技术与工程, 2022, 22(5): 1929-1935. [23] ZHENG Z, CHEN H N, LUO X W.A supervised event-based non-intrusive load monitoring for non- linear appliances[J]. Sustainability, 2018, 10(4): 1001-1028. [24] 王守相, 郭陆阳, 陈海文, 等. 基于特征融合与深度学习的非侵入式负荷辨识算法[J]. 电力系统自动化, 2020, 44(9): 103-110. |
|
|
|