|
|
Early warning and assistance of students' course learning based on machine learning |
SHI Jingzhuo, FU Yiwei |
School of Electrical Engineering, He'nan University of Science and Technology, Luoyang, He'nan 471023 |
|
|
Abstract It is one of the basic requirements for engineering education certification to provide early warning and assistance to at-risk students. Courses are the basic units of learning process. The learning warning combined with the formative assessment of the course can identify the at-risk students and provide targeted assistance to these students during the learning process of course, so that more students can achieve the course's learning objectives and provide effective support for achieving the final graduation requirements. Based on the data obtained through the formative assessment of the course, this paper designs the rolling early warning algorithm of course learning using the machine learning technology. The technical details of the algorithm are given, and the basic principles used to design assistance measures are also discussed. Practical application shows that the proposed algorithm can effectively identify the at-risk students, and the assistance measures can improve the learning outcomes of students.
|
Received: 16 February 2023
|
|
|
|
Cite this article: |
SHI Jingzhuo,FU Yiwei. Early warning and assistance of students' course learning based on machine learning[J]. Electrical Engineering, 2023, 24(5): 58-64.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2023/V24/I5/58
|
[1] 王永泉. 工程教育专业认证“底线”问题的解析与释疑——从课程目标达成评价谈起[J]. 高等工程教育研究, 2022(5): 50-56. [2] 戴先中. 对工程教育专业认证标准的再认识[J]. 中国大学教学, 2022(11): 4-11. [3] 中国工程教育专业认证协会秘书处. 工程教育认证通用标准解读及使用指南(2022版)[Z]. 北京, 2022. [4] 史敬灼. 工程教育专业认证背景下的形成性评价[J].电气技术, 2022, 23(10): 59-66. [5] 龙璇, 段斌, 柯其聪. 基于学情混杂控制的课程质量评价持续改进模式研究[J]. 电气技术, 2022, 23(10): 67-73. [6] 钱辰, 旷怡, 章兢. 基于前门调整法的“项目式学习”过程考核设计与课程质量评价[J]. 电气技术, 2022, 23(10): 74-79. [7] 段斌, 付子康. 《华盛顿协议》毕业要求框架下课程体系设置合理性评价的计算思维方法[J]. 电气技术, 2022, 23(12): 64-69. [8] 吴忭. 学习分析[M]. 北京: 教育科学出版社, 2022. [9] LU T H O, HUANG Q Y A, HUANG H C J, et al. Applying learning analytics for the early prediction of students’ academic performance in blended learning[J]. Journal of Educational Technology & Society, 2018, 21(2): 220-232. [10] 成亚玲, 谭爱平. 基于学习者画像的在线开放课程学习预警研究[J]. 当代职业教育, 2022(4): 102-112. [11] 陈艺捷. 一种学习预警模型的设计与实现[D]. 北京:北京大学, 2022. [12] 蒙娇. 基于大数据的学习预警模型及帮扶策略研究[D]. 呼和浩特: 内蒙古师范大学, 2022. [13] 邹宇航. 基于机器学习的学习预警系统的设计与实现[D]. 北京: 北京大学, 2021. [14] 杨丰玉, 陈雨安, 聂伟, 等. 基于过程数据的学习预警模型设计与功能实现[J]. 现代教育技术, 2021, 31(7): 97-104. [15] 陈明选, 周亮, 赵继勇. 学习设计与学习分析的联结: 现状、挑战与实现路径[J]. 开放教育研究, 2022, 28(6): 27-36. [16] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
|
|
|