|
|
A method of energized DC ice-melting for overhead ground wire of transmission line |
GAO Kai, LUO Richeng, LIU Juan, CHEN Ziqi, WANG Yutong |
School of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114 |
|
|
Abstract In order to solve the problem that the overhead ground wire ice-melting needs power outage operation, this paper takes two parallel optical fiber composite overhead ground wires (OPGW) and Al-cladding steel strands as the research objects, and proposes a new method of energized DC ice-melting for overhead ground wires. Firstly, the composition principle of the ice-melting circuit in this method is studied in depth. Then, the simulation model of the ice-melting circuit is established by using ATP-EMTP software, and the ice-melting current and the capacity of the ice-melting power supply are calculated. Finally, the ice-melting process of OPGW and Al-cladding steel strand and the temperature distribution of OPGW after de-icing are simulated and analyzed by COMSOL software. The research show that when the ice-melting power supply is installed in the middle of the ice-melting section, two parallel ground wires can deice at the same time; the influence of DC current in the ice-melting section on the non-ice-melting section is very small and can be ignored.
|
Received: 22 May 2024
|
|
|
|
Cite this article: |
GAO Kai,LUO Richeng,LIU Juan等. A method of energized DC ice-melting for overhead ground wire of transmission line[J]. Electrical Engineering, 2024, 25(11): 42-47.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I11/42
|
[1] 徐望圣, 曹伟伟, 王金沛, 等. 输电线路地线融冰塔侧设备远程运维技术[J]. 电气技术, 2023, 24(12): 59-63. [2] 杨国林, 蒋兴良, 王茂政, 等. 输电线路单导线覆冰形状对直流大电流融冰时间的影响[J]. 电工技术学报, 2024, 39(9): 2916-2924. [3] 王勇, 苗虹, 莫思特, 等. 高压架空输电线路防冰、融冰、除冰技术研究综述[J]. 电力系统保护与控制, 2020, 48(18): 178-192. [4] YANG Guolin, JIANG Xingliang, LIAO Yi, et al.Research on load transfer melt-icing technology of transmission lines: its critical melt-icing thickness and experimental validation[J]. Electric Power Systems Research, 2023, 221: 109409. [5] 张涵. 特高压换流站交、直流线路融冰装置同场布设运行策略研究[J]. 电气技术, 2020, 21(9): 49-53, 65. [6] 付广旭, 卢东斌, 张靖, 等. 特高压直流在线融冰技术及其工程应用[J]. 电气技术, 2024, 25(4): 77-84. [7] XU Feng, LI Danyu, GAO Peng, et al.Numerical simulation of two-dimensional transmission line icing and analysis of factors that influence icing[J]. Journal of Fluids and Structures, 2023, 118: 103858. [8] ZHOU Xiudong, ZHU Yuan, SUN Shiyi, et al.Performance analysis of electro-impulse de-icing device for overhead ground wire[J]. Advances in Electrical and Computer Engineering, 2022, 22(4): 3-10. [9] 孔晓峰, 方玉群, 赵俊杰, 等. 防雷防冰灾架空地线系统方案研究[J]. 高压电器, 2021, 57(7): 154-161. [10] 李晋伟, 王奇, 唐金昆, 等. 一种直流分段架空地线融冰方案的设计与研究[J]. 高压电器, 2015, 51(9): 97-102. [11] 罗日成, 潘俊文, 刘化交, 等. 超/特高压输电线路带电直流融冰方法[J]. 中南大学学报(自然科学版), 2016, 47(5): 1551-1558. [12] 邓元实, 范松海, 龚奕宇, 等. 500kV架空地线与OPGW绝缘化改造后感应电压研究[J]. 电瓷避雷器, 2020(6): 15-21. [13] 陈秀娟, 夏潮, 朱海宇, 等. 光纤复合架空地线直流融冰绝缘化改造对地线绝缘子与并联放电间隙的电气要求[J]. 高电压技术, 2017, 43(8): 2733-2738. [14] 徐望圣, 曹伟伟, 胡江, 等. 地线融冰自动接线装置就地电源系统的设计[J]. 电气技术, 2021, 22(2): 6-10. [15] 卢志刚, 李丹, 吕雪姣, 等. 含分布式电源的冰灾下配电网多故障抢修策略[J]. 电工技术学报, 2018, 33(2): 423-432. [16] 崔建业, 徐嘉龙, 姜文东, 等. 220 kV架空线路防雷防冰灾地线系统直流融冰电源设计[J]. 高压电器, 2021, 57(12): 209-217, 224. [17] 陈立群, 李成博, 周启文, 等. 新型整流桥串并联切换直流融冰装置[J]. 电力工程技术, 2022, 41(6): 230-238. [18] JIANG Xingliang, MENG Zhigao, ZHANG Zhijin, et al.DC ice-melting and temperature variation of optical fibre for ice-covered overhead ground wire[J]. IET Generation, Transmission & Distribution, 2015, 10(2): 352-358. [19] 蒋兴良, 孟志高, 张志劲, 等. OPGW临界融冰电流及其影响因素[J]. 电工技术学报, 2016, 31(9): 174-180. [20] 孟志高. 光纤复合架空地线(OPGW)直流融冰过程与模型研究[D]. 重庆: 重庆大学, 2017. |
|
|
|