|
|
Low-carbon optimized operation strategy of integrated energy system taking into account the participation of electric vehicles in an electric hydrogen production park |
GAO Yun, XIE Chao, ZHANG Gaohang, CAO Meng, SUN Lixiang |
School of Electrical Engineering, Xinjiang University, Urumqi 830046 |
|
|
Abstract Large-scale electric vehicles are connected to the park integrated energy system (PIES), in order to improve the energy utilization rate, reduce the pressure on the park’s power grid, and realize low-carbon operation, this paper proposes a two-tier low-carbon optimized operation strategy that combines electric vehicles and efficient hydrogen use. Firstly, the disordered charging of the electric vehicles is simulated based on the spatio-temporal feature correlation, on the basis of which real-time tariffs are utilized to guide the electric vehicles for orderly charging. Combining the improved power-to-gas (P2G) two-phase technology, the park participates in the carbon trading market. The laddering carbon trading mechanism is introduced to minimize the system’s cost of purchasing energy, the cost of carbon trading, and the cost of abandoning the wind as a target function. The improved whale optimization algorithm (IWOA) is adopted for solving the problem. Finally, the scenarios are compared to verify the economy and environmental benefits of the two-tier optimal scheduling strategy proposed in this paper.
|
Received: 17 August 2024
|
|
|
|
Cite this article: |
GAO Yun,XIE Chao,ZHANG Gaohang等. Low-carbon optimized operation strategy of integrated energy system taking into account the participation of electric vehicles in an electric hydrogen production park[J]. Electrical Engineering, 2025, 26(2): 14-25.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I2/14
|
[1] 徐韶峰. 拥抱碳中和, 助力构建电网低碳可持续未来[J]. 电气技术, 2020, 21(12): 7-8. [2] 袁坤龙, 张少康, 常冉, 等. 阶梯式碳交易机制下计及电-气-热综合能源系统需求响应优化运行[J]. 电气技术, 2024, 25(1): 8-16. [3] 于仲安, 马静瑶. 含风电耦合制氢的主从博弈多区域综合能源系统协调调度策略[J]. 电气技术, 2023, 24(7): 1-10. [4] 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132. [5] 房宇轩, 胡俊杰, 马文帅. 计及用户意愿的电动汽车聚合商主从博弈优化调度策略[J]. 电工技术学报, 2024, 39(16): 5091-5103. [6] 肖朝霞, 张可信, 冯冀. 含电动汽车充电站的风/光/柴独立微电网分层优化调度[J]. 天津工业大学学报, 2022, 41(4): 61-74. [7] 刘洪, 陈星屹, 李吉峰, 等. 基于改进CPSO算法的区域电热综合能源系统经济调度[J]. 电力自动化设备, 2017, 37(6): 193-200. [8] 孙科, 陈文钢, 陈佳佳, 等. 基于电动汽车的极端场景多微电网韧性提升策略研究[J]. 电力系统保护与控制, 2023, 51(24): 53-65. [9] 宋晓通, 吕倩楠, 孙艺, 等. 基于电价引导的电动汽车与综合能源系统交互策略[J]. 高电压技术, 2021, 47(10): 3744-3754. [10] KOLTHANARAT S, SOMSIRI P, TUNGPIMOLRUT K.Contribution of real-time pricing to impacts of electric cars on distribution network[C]//2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 2019: 1-5. [11] 郭静蓉, 向月, 吴佳婕, 等. 考虑CCUS电转气技术及碳市场风险的电-气综合能源系统低碳调度[J]. 中国电机工程学报, 2023, 43(4): 1290-1302. [12] MA Yiming, WANG Haixin, HONG Feng, et al.Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system[J]. Energy, 2021, 236: 121392. [13] MEHRJERDI H, SABOORI H, JADID S.Power- to-gas utilization in optimal sizing of hybrid power, water, and hydrogen microgrids with energy and gas storage[J]. Journal of Energy Storage, 2022, 45: 103745. [14] 董海鹰, 贠韫韵, 马志程, 等. 计及多能转换及光热电站参与的综合能源系统低碳优化运行[J]. 电网技术, 2020, 44(10): 3689-3699. [15] 李鹏, 韩建沛, 殷云星, 等. 电转氢作为灵活性资源的微网容量多目标优化配置[J]. 电力系统自动化, 2019, 43(17): 28-35, 139. [16] 刘志坚, 刘瑞光, 梁宁, 等. 含电转气的微型能源网日前经济优化调度策略[J]. 电工技术学报, 2020, 35(增刊2): 535-543. [17] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55. [18] U.S. Department of Transportation, Federal Highway Administration.2017 national household travel survey[EB/OL].[2018-07-16]. http://nhts.ornl.gov. [19] 欧名勇, 陈仲伟, 谭玉东, 等. 基于峰谷分时电价引导下的电动汽车充电负荷优化[J]. 电力科学与技术学报, 2022, 35(5): 54-59. [20] 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6): 2185-2198. |
|
|
|