|
|
Construction of a distribution network line operating condition characteristic gene bank based on wavelet entropy |
WANG Liangfeng, LI Rui, SHANG Xiaoya, LI Qinxue, QIU Zejin |
School of Low Altitude Equipment and Intelligent Control, Guangzhou University of Navigation, Guangzhou 510700 |
|
|
Abstract In order to improve the efficiency of identification and diagnosis of distribution network line faults and improve the reliability of power supply, this paper adopts a method based on wavelet entropy to construct a distribution network line operating condition characteristic gene bank. Firstly, the distribution network line simulation model is built to extract the operation data, and then, combined with the effective simulation data, the feature extraction algorithm model based on wavelet entropy is built, and finally, the characteristic gene bank is developed based on the feature data. The simulation results show that the feature extraction algorithm and characteristic gene bank based on wavelet entropy can effectively identify and diagnose a variety of operating conditions of distribution network lines, which meets the requirements of sustainable development of distribution network.
|
Received: 16 August 2024
|
|
|
|
Cite this article: |
WANG Liangfeng,LI Rui,SHANG Xiaoya等. Construction of a distribution network line operating condition characteristic gene bank based on wavelet entropy[J]. Electrical Engineering, 2025, 26(2): 35-41.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I2/35
|
[1] 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36(22): 4627-4636. [2] 秦苏亚, 薛永端, 刘砾钲, 等. 有源配电网小电流接地故障暂态特征及其影响分析[J]. 电工技术学报, 2022, 37(3): 655-666. [3] 倪萌, 王蓓蓓, 朱红, 等. 能源互联背景下面向高弹性的多元融合配电网双层分布式优化调度方法研究[J]. 电工技术学报, 2022, 37(1): 208-219. [4] 史鸿飞, 邓丰, 钟航, 等. 基于暂态时-频特征差异的配电网高阻接地故障识别方法[J]. 中国电机工程学报, 2024, 44(16): 6455-6470. [5] 肖文妍, 郭谋发, 林佳壕, 等. 基于多频带多特征融合的配电网单相接地故障选段方法[J]. 电气技术, 2024, 25(7): 7-14. [6] 林骏捷, 林佳壕, 郭谋发. 基于多暂态特征量聚类的配电网接地故障区段定位方法[J]. 电气技术, 2023, 24(5): 16-22. [7] REN Bo, LUO Yongjie, ZHOU Niancheng, et al.Fault location in high-voltage direct-current grids based on panoramic voltage features and vision transformers[J]. International Journal of Electrical Power and Energy Systems, 2024, 158: 109958. [8] ZHANG Dehai, ZHANG Wenhai, WANG Changzhi, et al.Fault segment location for MV distribution system based on the characteristic voltage of LV side[J]. Electronics, 2023, 12(7): 1734. [9] 徐江泽. 基于大数据的配电网络故障监测与诊断研究[J]. 电气技术与经济, 2024(8): 348-350. [10] 梁海生. 基于数字孪生的配电网局部异常因子故障辨识仿真[J]. 电气传动, 2024, 54(7): 66-72. [11] 苏斌, 侯思祖, 郭威. 基于图像融合和双通道卷积神经网络的配电网故障选线方法研究[J]. 电子测量与仪器学报, 2024, 38(9): 54-66. [12] 白浩, 李巍, 杨建洲, 等. 基于小波包分解多信息融合的配电网故障选线保护方法[J]. 电子器件, 2024, 47(3): 757-763. [13] WANG Haozhi, SHI Yuntao, GUO Wei.Fault line selection method for power distribution network based on graph transformation and ResNet50 model[J]. Information, 2024, 15(7): 375. [14] 董志文, 苏晶晶. 基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法[J]. 电气技术, 2024, 25(1): 1-7. [15] 何志鹏, 李伟林, 邓云坤, 等. 低压交流串联故障电弧辨识方法[J]. 电工技术学报, 2023, 38(10): 2806-2817. [16] 窦嘉炜, 杨小煜, 杨晓忠. 基于分数阶小波变换的电力系统谐波检测方法[J]. 中国电机工程学报, 2024, 44(3): 872-879. [17] 胡安平, 姜玉洁, 陶以彬, 等. 基于小波能量熵的配电网电压暂降源定位方法[J]. 电工电能新技术, 2021, 40(5): 50-56. [18] 代亚杰. 基于傅里叶变换和小波变换的电能质量谐波检测及扰动分析[D]. 太原: 中北大学, 2020. [19] 高海洋, 王玮, 尚同同, 等. 基于小波能谱熵的串联型故障电弧检测方法[J]. 电工电能新技术, 2022, 41(12): 63-71. [20] 邹丹旦, 项成恩, 廖昊爽, 等. 基于小波能谱熵和PSO-SVM的输电线路故障类型识别[C]//2022年江西省电机工程学会年会论文集, 南昌, 2022. [21] 梁睿, 彭楠, 张政一, 等. 暂态特征模量时频分析的电缆型配电网单相接地故障区段定位[J]. 中国电机工程学报, 2023, 43(23): 9098-9114. [22] 张才庆, 王铭, 李潘, 等. 基于能量特征的配电网接地故障暂态选线方法研究[J]. 节能, 2021, 40(9): 68-71. |
|
|
|