|
|
Dual-layer optimization operation of an island microgrid considering demand response |
KUANG Honghai, XU Yuhao, LI Zilong, YANG Huixian |
College of Electrical and Information Engineering, Hu’nan University of Technology, Zhuzhou, Hu’nan 412007 |
|
|
Abstract To comprehensively consider the benefits of both the supply and demand sides in the scheduling process of a microgrid, an island microgrid dual-layer optimal scheduling model considering demand response is established. The upper level optimizes the output of each unit with the goal of maximizing the net revenue of the microgrid. The lower level optimizes the load curve with the goal of maximizing residents’ overall comfort. An improved dung beetle optimizer is used to solve the dual-layer optimization model. The population is initialized using a sinusoidal mapping and optimized with quasi-oppositional learning to increase population diversity. During the update phase, the Harris hawks’ besiege strategy and adaptive t-distribution perturbation are introduced to enhance the optimization capability and improve the solution quality. The superiority of the improved algorithm is verified by comparing its convergence on test functions with other algorithms. The case study results show that the improved algorithm not only improves the system’s economic benefits but also enhances the users’ electricity and energy comfort. Comparing the results with those obtained by the original dung beetle optimizer confirms the effectiveness of the im-proved method.
|
Received: 05 September 2024
|
About author:: 湖南省自然科学基金项目(2023JJ50176);湖南省教育厅重点项目(23A0441) |
|
|
|
Cite this article: |
KUANG Honghai,XU Yuhao,LI Zilong等. Dual-layer optimization operation of an island microgrid considering demand response[J]. Electrical Engineering, 2025, 26(3): 15-21.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I3/15
|
[1] 张萍, 陆霞, 孟庆鹤. 基于多策略麻雀搜索算法的微电网容量优化配置[J].电气技术, 2023, 24(1): 1-9. [2] CHEN Liangwei, ZHANG Jingwen, ZHANG Xinyue, et al.A new low-carbon project scheduling problem with renewable and traditional energy: a com- prehensive analysis and its solution[J].Journal of Cleaner Production, 2024, 468: 143089. [3] 李长云, 徐敏灵, 蔡淑媛. 计及电动汽车违约不确定性的微电网两段式优化调度策略[J].电工技术学报, 2023, 38(7): 1838-1851. [4] 马瑞真, 张新燕, 章攀钊, 等. 计及需求响应与主从博弈的微电网低碳优化调度[J].现代电子技术, 2023, 46(7): 121-127. [5] 夏鑫, 钟浩, 张磊, 等. 计及动态电价的电动汽车参与微电网调度双层优化策略[J].电力工程技术, 2024, 43(3): 140-150. [6] 黄冬梅, 吕嘉欣, 时帅, 等. 计及需求响应的海岛微电网群优化运行研究[J].电力系统保护与控制, 2024, 52(9): 88-98. [7] 王强杰, 沈达, 邬晶, 等. 基于天牛须-粒子群算法的微电网日经济调度优化[J].上海电机学院学报, 2021, 24(1): 39-46. [8] 蔡胜, 谢云云, 张玉坪, 等. 考虑孤岛微电网建立过程功率冲击的弹性配电网主动预防调度[J].电工技术学报, 2023, 38(23): 6419-6432. [9] XUE Jiankai, SHEN Bo.Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing, 2023, 79(7): 7305-7336. [10] 彭铎, 陈江旭, 张倩, 等. 多策略改进的蜣螂搜索算 法优化3DDV-Hop节点定位[J].重庆邮电大学学报(自然科学版), 2024, 36(3): 438-449. [11] 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J].电力系统保护与控制, 2024, 52(6): 120-130. [12] 万怡华, 张雪梅. 混合多策略改进蜣螂算法的避障路径规划[J].电子测量技术, 2024, 47(2): 69-78. [13] 牛耕, 季宇, 陈培坤, 等. 含海洋能发电的海岛微网能量优化调度方法[J].电力建设, 2021, 42(6): 96-104. [14] 孙川, 汪隆君, 许海林. 用户互动负荷模型及其微电网日前经济调度的应用[J].电网技术, 2016, 40(7): 2009-2015. [15] 许雨玲, 王磊, 江伟建, 等. 考虑源荷互动的微电网容量配置双层优化模型[J].浙江电力, 2024, 43(4): 29-39. [16] 胡春安, 熊昱然. 多策略改进的混沌哈里斯鹰优化算法[J].计算机工程与科学, 2023, 45(9): 1648-1660. [17] 吴成明, 邢博洋, 李世春. 基于麻雀搜索算法的微电网分层优化调度[J].南方电网技术, 2024, 18(2): 115-123. |
|
|
|