|
|
Research on element recognition method of power dispatching control system based on improved YOLOv7 |
ZHANG Wenguang1, ZENG Xiangjiu1,2, LIU Chongyang1,2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206; 2. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 |
|
|
Abstract Aiming at the problems of dense distribution of elements, similar elements and large number of small-sized elements in power dispatching control system diagrams, which lead to poor recognition effect, an improved you only look once v7 (YOLOv7) element recognition method for the power dispatching control system diagrams is proposed. Firstly, the lightweight dilated reparam block net with cross stage partial and efficient layer aggregation network (DRBNCSPELAN) module is used to replace the efficient layer aggregation network (ELAN) module in the backbone network to capture spatial patterns of different scales simultaneously. Secondly, an information-guided fusion module is proposed to replace the Concat in the neck network, and the sequeeze-and-excitation (SE) attention mechanism is integrated to enhance the global information interaction ability. Then, the minimum point distance intersection over union (MPDIoU) loss function is introduced to improve the recognition effect of the element bounding box. Finally, experimental validation is performed via the power dispatch control system diagram dataset. The results show that compared with the baseline model, the precision, recall and mean average precision of the proposed method are improved by 5.1 percentage points, 3.1 per-centage points and 3.5 percentage points respectively, which is helpful to achieve accurate recognition of elements in the power dispatching control system diagrams.
|
Received: 27 December 2024
|
|
|
|
Cite this article: |
ZHANG Wenguang,ZENG Xiangjiu,LIU Chongyang. Research on element recognition method of power dispatching control system based on improved YOLOv7[J]. Electrical Engineering, 2025, 26(5): 1-9.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I5/1
|
[1] 张柯, 李金旗. 数字站建设方案及技术探究[J]. 电气技术, 2023, 24(12): 68-74. [2] 李都红, 郭树林, 解凯, 等. 基于“四型机场”理念的某机场10kV变电站综合自动化管理系统设计与应用[J]. 电气技术, 2021, 22(2): 84-90. [3] 陈晓杰, 方贵盛. 一种基于图元结构关系的电气草图符号识别方法[J]. 机电工程, 2017, 34(8): 823-828. [4] 王玉豪, 方贵盛. 基于DAGSVM和决策树的电气草图符号识别[J]. 轻工机械, 2017, 35(4): 56-59. [5] 肖豆, 侯晓荣. 基于PHOG特征的电路图中电气符号识别[J]. 舰船电子工程, 2017, 37(1): 90-93. [6] 苟军年, 杜愫愫, 刘力. 基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测[J]. 电工技术学报, 2023, 38(1): 47-59. [7] 郑含博, 胡思佳, 梁炎燊, 等. 基于YOLO-2MCS的输电线路走廊隐患目标检测方法[J]. 电工技术学报, 2024, 39(13): 4164-4175. [8] 仲林林, 胡霞, 刘柯妤. 基于改进生成对抗网络的无人机电力杆塔巡检图像异常检测[J]. 电工技术学报, 2022, 37(9): 2230-2240, 2262. [9] 李昊, 管荑, 王杉, 等. 电力系统厂站接线图拓扑关系检测技术[J]. 北京航空航天大学学报, 2021, 47(3): 531-538. [10] 徐剑, 张皓, 徐航, 等. 一种基于Faster RCNN的电网图元识别方法[J]. 计算机与现代化, 2021(12): 53-57. [11] 王梓耀, 罗庆全, 萧文聪, 等. 电网厂站接线图人工智能识别关键方法[J]. 电力系统自动化, 2023, 47(2): 115-124. [12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state- of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC Canada, 2023: 7464-7475. [13] 林丽霞, 吴悦园. 基于改进YOLOv7的电力设备红外过热缺陷检测方法[J]. 电气技术, 2024, 25(1): 42-47. [14] ZHENG Zhaohui, WANG Ping, REN Dongwei, et al.Enhancing geometric factors in model learning and inference for object detection and instance segmenta- tion[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. [15] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//European Conference on Computer Vision, Milan, Italy, 2024: 1-18. [16] ZHANG Yiyuan, DING Xiaohan, YUE Xiangyu.Scaling up your kernels: large kernel design in ConvNets towards universal representations[EB/OL]. [2025-03-10].https://doi.org/10.48550/arXiv.2410.08049. [17] HU Jie, SHEN Li, SUN Gang.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 7132-7141. [18] MA Siliang, XU Yong.MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2025- 03-10].https://doi.org/10.48550/arXiv.2307.07662. [19] LAVANYA K, KARNICK S, GHALIB M R, et al.A novel method for vehicle detection in high-resolution aerial remote sensing images using YOLT approach[J]. Multimedia Tools and Applications, 2022, 81: 23551-23566. |
|
|
|