|
|
A review of high-voltage and high-power electrical connection technology for more-electric engines |
ZHANG Lu, ZHAO Xuan, LI Lisheng, TONG Zhe |
AECC Aero Engine Control System Institute, Wuxi, Jiangsu 214063 |
|
|
Abstract In this paper, the high-voltage and high-power electrical connection methods of more- electric engines are reviewed. Firstly, the technical challenges of electrical connection faced by more-electric engines due to high-power motor components, high-voltage systems, and new control modes are analyzed. Secondly, the key technology analysis is carried out from the aspects of high-current connectors, transmission cables, laminated busbars, partial discharge, and electromagnetic compatibility. The design measures such as contact clearance, creepage distance, interface sealing, contact sealing and interlocking function of joining and separating are proposed for high-voltage and high-current connectors. The electrical transmission capacity of three transmission cables, such as copper power cables, lightweight power cables and superconducting cables, is analyzed. The busbar connection technology with high voltage and high working temperature is studied. The mechanism and solution measures of high-altitude partial discharge are analyzed. A combination of simulation and test solution is proposed for electromagnetic interference. Finally, it is pointed out that multi-dimensional optimization design should be carried out in the design process of more-electric engine to achieve the optimal electrical connection. The work of this paper can provide reference for the current design of lightweight electrical system of more-electric engine.
|
Received: 21 October 2024
|
|
|
|
Cite this article: |
ZHANG Lu,ZHAO Xuan,LI Lisheng等. A review of high-voltage and high-power electrical connection technology for more-electric engines[J]. Electrical Engineering, 2025, 26(6): 1-7.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I6/1
|
[1] SARLIOGLU B, MORRIS C T.More electric aircraft: review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Trans- portation Electrification, 2015, 1(1): 54-64. [2] WHEELER P.Technology for the more and all electric aircraft of the future[C]//2016 IEEE International Conference on Automatica (ICA-ACCA), Curico, Chile, 2016. [3] YIN Mingming, BOZHKO S, YAO Taike, et al.Control system design and the power management of MEFADEC assembled on more-electric aircraft[C]// 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Elec- trification Conference (ESARS-ITEC), Nottingham, UK, 2018. [4] PARK I G, KIM S I.Modeling and analysis of multi-interphase transformers for connecting power converters in parallel[C]//PESC97. Record 28th Annual IEEE Power Electronics Specialists Con- ference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, St. Louis, MO, USA, 1997. [5] 李洪亮, 康元丽, 回彦年. 电推进飞机促进航空业变革[J]. 航空动力, 2021(5): 23-28. [6] 王翔宇. 电动飞行与推进系统变革[J]. 航空动力, 2019(3): 43-47. [7] HIRST M, MC LOUGHLIN A, NORMAN P J, et al.Demonstrating the more electric engine: a step towards the power optimised aircraft[J]. IET Electric Power Applications, 2011, 5(3): 3-13. [8] SAE. SAE aerospace information report. aircraft electrical voltage level definitions[R]. SAE-AIR-7052, USA: SAE, 2021. [9] GARRETT M, AVANESIAN D, GRANGER M, et al.Development of an 11 kW lightweight, high efficiency motor controller for NASA X-57 distributed electric propulsion using SiC MOSFET switches[C]//2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Indianapolis, IN, USA, 2019. [10] JANSEN R H, KASCAK P E, DYSON R W, et al.High efficiency megawatt motor preliminary design[C]// AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, 2019. [11] 唐继, 蒋芳芳, 李圣强, 等. 大电流接触件极限载流能力研究[J]. 机电元件, 2023, 43(3): 13-14, 26. [12] 胡浩. 电动汽车大电流连接器设计及关键性能研究[D]. 西安: 长安大学, 2020. [13] 姚雷阳. 功率连接器设计关键影响因素研究[D]. 北京: 北京邮电大学, 2017. [14] SHIN E S E. Development of high voltage micro- multilayer multifunctional electrical insulation (MMEI) system[C]//2019 AIAA/IEEE Electric Aircraft Tech- nologies Symposium (EATS), Indianapolis, IN, USA, 2019. [15] ANDROSCH R, WUNDERLICH B.A study of annealing of poly (ethylene-co-octene) by temperature- modulated and standard differential scanning calori- metry[J]. Macromolecules, 1999, 32(21): 7238-7247. [16] 尚恺, 李加才, 王诗航, 等. 高压电缆交联聚乙烯绝缘料黏度参数对挤出特性影响的仿真研究[J]. 电工技术学报, 2024, 39(3): 810-819. [17] PATIL N, LIN A, ZHANG Jie, et al.Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes[J]. IEEE Transactions on Nanotechnology, 2011, 10(4): 744-750. [18] SUKIRNO, BISRI S Z, IRMELIA, et al. Comparison of electronic transport parameter of CNT(10,10)/ CNT(17,0) and CNT(5,5)/CNT(8,0) carbon nanotube metal-semiconductor on-tube heterojunction[C]//2006 IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 2006. [19] PRINCE T M, KAISAR T, MOMINUZZAMAN S M.Effect of finite length on the band gap of semi- conducting and metallic carbon nanotube[C]//2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox'sBazar, Bangladesh, 2019. [20] MORANDI A, ANEMONA A, ANGELI G, et al.The DRYSMES4GRID project: development of a 500 kJ/ 200 kW cryogen-free cooled SMES demonstrator based on MgB2[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-5. [21] 陈静. 基于Ansys的低电感叠层母排设计[J]. 电气技术, 2016, 17(6): 78-80. [22] RAHMOUNI O, AIT-AMAR S, DUCHESNE S, et al.Laminated busbar PDIV improvement using a new varnish-based insulation technology with micro/nano fillers[C]//2023 IEEE Electrical Insulation Conference (EIC), Quebec City, QC, Canada, 2023. [23] PAULSSON G, SAHLEN F, MARTENSSON E, et al.Ageing behaviour and temperature rise in end corona protection layer for high voltage machines subjected to converter-like voltages[C]//2017 INSUCON-13th Inter- national Electrical Insulation Conference (INSUCON), Birmingham, UK, 2017. [24] PASCHEN F. Ueber die zum funkenübergang in luft, wasserstoff und kohlensäure bei verschiedenen drucken erforderliche potentialdifferenz[J]. Annalen Physik, 1889, 273(5): 69-96. [25] 张本栋, 江军, 李治, 等. 面向未来多电飞机的低气压下局部放电[J]. 航空学报, 2022, 43(7): 275-285. [26] 沈瑶, 刘兴杰, 梁英, 等. 基于硅橡胶分子链陷阱变化的复合绝缘子老化现象[J]. 电工技术学报, 2024, 39(17): 5545-5554. [27] 董章, 李思尧, 陈雅旎, 等. 基于组合赋权的电缆风险评估可视化[J]. 电气技术, 2023, 24(6): 57-63. [28] 李思尧, 董章, 陈雅旎, 等. 基于NGO-VMD-HHT的电缆局部放电信号特征量提取方法[J]. 电气技术, 2023, 24(11): 35-41, 47. [29] ACHEEN R, ABADIE C, LEBEY T, et al.Comparison of the electrical ageing under sinusoidal and square- wave stresses[C]//2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, 2018. [30] 李静, 易晨曦, 彭世东, 等. 高海拔环境下大容量直流空气断路器灭弧性能研究[J]. 电工技术学报, 2024, 39(3): 863-874. [31] 朱敏慧, 闵道敏, 高梓巍, 等. 直流电缆用交联聚乙烯绝缘的击穿概率及其尺度效应仿真[J]. 电工技术学报, 2024, 39(4): 1172-1184. [32] 杨德亮, 刘宏宇. 航空线缆局部放电试验研究[J]. 中国机械, 2024(3): 4-8. [33] 吴颜飞. 基于永磁同步电动机驱动系统传导电磁干扰模型的干扰预测和滤波器设计[J]. 电气技术, 2023, 24(8): 37-43, 49. [34] 项成恩, 潘捍宇, 涂忱胜, 等. 高压动力电缆电磁兼容研究[J]. 江西电力, 2023, 47(2): 18-23. [35] 胡国民, 付志斌. 电动汽车高压连接器EMC性能研究[J]. 机械制造与自动化, 2023, 52(1): 230-233. [36] 张泽权, 蔡新景. 基于COMSOL仿真的电力电缆局部放电检测传感器设计[J]. 电气技术, 2023, 24(4): 29-36. |
|
|
|