|
|
Research and application of key technologies for reliability testing of fully domesticated chip relay protection devices |
ZHANG Wen, MA Quanxia, WANG Zhe, HE Renke |
He'nan Source-Grid-Load-Storage Electrical Research Co., Ltd, Xuchang, He'nan 461000 |
|
|
Abstract Based on the characteristics of the fully domesticated chip relay protection device's software and hardware platforms, and addressing the key and difficult points in the testing process, this paper proposes a multi-CPU internal communication testing method for fully domesticated chip relay protection devices. Utilizing a dedicated internal detection module, the method simulates and monitors various normal and abnormal data without altering the original wiring layout, to verify the stability of internal communications between CPU boards. Additionally, this paper presents key technologies of internal communication reliability testing and platform application testing, details test plans for critical applications such as platform self-check, intelligent IO self-check, abnormal reset functions, and memory overflow risks, and summarizes typical on-site problem verification and key testing items. Finally, by comparing and analyzing the differences in key technical indicators between the “nine unified” devices and fully domesticated chip relay protection devices, the study offers insights for the product development of fully domesticated chip relay protection devices.
|
Received: 02 December 2024
|
|
|
|
Cite this article: |
ZHANG Wen,MA Quanxia,WANG Zhe等. Research and application of key technologies for reliability testing of fully domesticated chip relay protection devices[J]. Electrical Engineering, 2025, 26(6): 68-74.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I6/68
|
[1] 吴琴芳, 陈恳. IEC 61850与数字化变电站的应用研究[J]. 电气技术, 2009, 10(2): 59-62. [2] 刘慧源, 郝后堂, 李延新, 等. 数字化变电站同步方案分析[J]. 电力系统自动化, 2009, 33(3): 55-58. [3] 樊陈, 倪益民, 窦仁辉, 等. 智能变电站过程层组网方案分析[J]. 电力系统自动化, 2011, 35(18): 67-71. [4] 游建军, 郭创, 孟乐, 等. 应用于智能变电站的备自投解决方案[J]. 电气技术, 2014, 15(增刊1): 85-87. [5] 贾惠彬, 武文瑞, 吴堃, 等. 基于异步整形机制的智能变电站通信队列调度策略[J]. 电工技术学报, 2024, 39(17): 5422-5433. [6] 黄扬琪, 路欣怡, 刘念, 等. 含隔离式断路器的新一代智能变电站主接线可靠性评估及灵敏度分析[J]. 电气技术, 2014, 15(6): 10-14, 79. [7] 张峰, 徐晨, 穆云龙, 等. 智能变电站高可靠无缝冗余环网性能测试平台的研究和实现[J]. 电气技术, 2021, 22(4): 43-49. [8] 金能, 梁宇, 邢家维, 等. 提升配电网线路保护可靠性的远方保护及其与就地保护优化配合方案研究[J]. 电工技术学报, 2019, 34(24): 5221-5233. [9] 浮明军, 王龙飞, 姬希娜, 等. 就地化保护环网通信异常分析及处理策略[J]. 电力系统自动化, 2019, 43(7): 179-184. [10] 王栋, 陈传鹏, 颜佳, 等. 新一代电力信息网络安全架构的思考[J]. 电力系统自动化, 2016, 40(2): 6-11. [11] 张晓敏, 马鹏飞. 基于国产软硬件平台的指控计算机设计[J]. 航天控制, 2020, 38(2): 74-80. [12] 樊鹏, 李璀, 董琦昕, 等. 基于国产软硬件平台的火控计算机[J]. 兵工自动化, 2017, 36(11): 26-29. [13] 徐帅, 林宝军, 刘迎春, 等. 基于龙芯宇航级芯片的BSP开发和移植[J]. 计算机工程与科学, 2020, 42(4): 571-579. [14] 王延鹏. 基于龙芯3A1500的计算加速模块设计方法[J]. 电子技术应用, 2017, 43(12): 109-112. [15] 赵青春, 陆金凤, 李智诚, 等. 继电保护专用芯片集成差动保护技术的研究[J]. 电气技术, 2020, 21(10): 133-136. [16] 南亚希, 展巍, 裴后宣. 自主可控的安全RTU设计与实现[J]. 电力系统保护与控制, 2016, 44(14): 154-159. [17] 钱宏文, 李小虎, 杨文豪, 等. 基于LabVIEW和FPGA的国产化ADC\DAC通用测试平台的设计与实现[J]. 自动化技术与应用, 2020, 39(6): 15-18, 53. [18] 刘戈, 纪陵, 刘文彪. 智能继电保护数字孪生模型构建及应用[J]. 电气技术, 2023, 24(7): 83-88. [19] 王超. 数字化变电站继电保护系统可靠性研究[D]. 杭州: 浙江大学, 2013. [20] 戴志辉, 王增平, 焦彦军, 等. 阶段式保护原理性失效风险的概率评估方法[J]. 电工技术学报, 2012, 27(6): 175-182. |
|
|
|