|
|
Design and preparation of high-performance supercapacitor units and their application in thermal power frequency regulation |
DANG Guoju1, XU Wenhao1, WU Pengyue2, ZHENG Yun3, QIU Fengtao4 |
1. Nantong Jianghai Energy Storage Technology Co., Ltd, Nantong, Jiangsu 226321; 2. Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710001; 3. Huaneng Luoyuan Power Generation Co., Ltd, Fuzhou 350600; 4. Huaneng Wuhan Power Generation Co., Ltd, Wuhan 430400 |
|
|
Abstract In order to meet the flexibility transformation requirements of thermal power units under the “dual carbon” goal, this paper designs and develops a high-energy density lithium-ion supercapacitor monomer to address the bottleneck problems of insufficient frequency response rate of traditional lithium-ion batteries and limited energy density of supercapacitors. A supercapacitor unit with a rated capacity of 17 000 F, energy density of 90 W∙h/kg, and power density of 10 kW/kg is developed by using a hybrid energy storage mechanism of hard carbon negative electrode/activated carbon positive electrode. According to QC/T 741—2014 standard testing, the monomer maintains a capacity retention rate of 83.2% in the temperature range of -20~55℃. After 50 000 cycles, the capacity decay rate is only 16.8%. After 1 000 hours of high-temperature aging, the capacity remains at 87.3%. When applied to a 5 MW supercapacitor +15 MW lithium-ion hybrid frequency regulation system, the frequency regulation performance index is improved by 60% compared to traditional coal-fired units, and the full life cycle cost is lower than that of pure lithium battery solutions. Research has shown that this high- energy-density supercapacitor unit effectively solves the prominent contradiction between high power demand and equipment lifespan in thermal power frequency regulation scenarios through its “second level response + ten thousand cycles” characteristics.
|
Received: 07 May 2025
|
|
|
|
Cite this article: |
DANG Guoju,XU Wenhao,WU Pengyue等. Design and preparation of high-performance supercapacitor units and their application in thermal power frequency regulation[J]. Electrical Engineering, 2025, 26(9): 21-27.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I9/21
|
[1] 舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. [2] 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716. [3] 国家发展改革委, 国家能源局. 能源重点领域大规模设备更新实施方案[Z]. 北京, 2024. [4] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38(6): 1662-1677. [5] 袁桂丽, 苏伟芳. 计及电动汽车不确定性的虚拟电厂参与AGC调频服务研究[J]. 电网技术, 2020, 44(7): 2538-2548. [6] 肖家杰, 李培强, 毛志宇, 等. 考虑火电时滞特性的电池储能集群调频综合控制策略研究[J]. 电工技术学报, 2025, 40(3): 689-704. [7] 谢志佳, 李德鑫, 王佳蕊, 等. 储能系统参与电力系统调频应用场景及控制方法研究[J]. 热力发电, 2020, 49(8):117-125. [8] 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89. [9] 黄策, 燕云飞, 沈迎, 等. 超容储能辅助火电机组调频的电气问题研究[J]. 电气技术, 2022, 23(8): 103-108. [10] 张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11): 48-58. [11] 梁继业, 袁至, 王维庆, 等. 基于电池储能系统的综合自适应一次调频策略[J]. 电工技术学报, 2025, 40(7): 2322-2334. [12] HAN Xu, LIU Zhongwen.Research on frequency modulation capacity configuration and control strategy of multiple energy storage auxiliary thermal power unit[J]. Journal of Energy Storage, 2023, 73: 109186. [13] 沈迎, 黄策, 胡锡东, 等. 锂离子电容器参与火电机组调频研究[J]. 电气技术, 2021, 22(10): 98-103. [14] WU Yu, CAO Chuanbao.The way to improve the energy density of supercapacitors: progress and perspective[J]. Science China Materials, 2018, 61(12): 1517-1526. [15] VIGNESH V, DIVYA R, SUNDARARAJAN M, et al.Industrial manufacturing of supercapacitors[M]//Smart Supercapacitors. Amsterdam: Elsevier, 2023: 631-650. [16] NAUMANN M, SCHIMPE M, KEIL P, et al.Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell[J]. Journal of Energy Storage, 2018, 17: 153-169. [17] 李政, 刘宏伟, 康健, 等. 混合储能参与自动发电控制容量优化配置[J]. 电气技术, 2021, 22(9): 34-40. [18] 国家能源局. 福建省电力调频辅助服务市场交易规则(试行)(2022年修订版)[Z]. 福建, 2022. |
|
|
|