|
|
|
| Analysis of the influence of different grounding modes of neutral line on uninterruptible power supply performance in multi-power system switching |
| LIAN Yongle, WANG Ming, LI Shuai |
| Ningxia Branch of Civil Aviation Air Traffic Control, Yinchuan 750009 |
|
|
|
|
Abstract When the multi-power supply system is switched between each other, the performance of the uninterruptible power supply (UPS) circuit will be greatly affected due to the different grounding methods of the neutral line. The article analyzes and compares the impact of the three-level and four-level automatic transfer switches (ATS), and the different grounding methods of the neutral line on the UPS circuit when the multi-power system is switched. And according to whether the multiple input power supplies, input power and output power are independent of each other in the multi-power system, the concept of independent power supply system is proposed. Combined with independent power supply system, the effect of improving power quality is obvious, and the method is economical. There are two solutions to install output isolation transformer or bypass isolation transformer in the UPS circuit of multi-power system switching. Through the comparison and analysis of the performance of different UPS circuits, the optimal engineering application scheme is obtained, which is that the neutral line “breaks before make” four-stage ATS, and the UPS circuit with bypass isolation transformer. The circuit has the advantages of high reliability, no stray current, independent and electrical isolation between input power supplies and between input and output power supplies, and continuous neutral ground reference, which can effectively suppress common mode noise and reduce zero-ground voltage.
|
|
Received: 08 November 2024
|
|
|
|
| Cite this article: |
|
LIAN Yongle,WANG Ming,LI Shuai. Analysis of the influence of different grounding modes of neutral line on uninterruptible power supply performance in multi-power system switching[J]. Electrical Engineering, 2025, 26(10): 8-15.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I10/8
|
[1] 郭丽伟, 薛永端, 徐丙垠, 等. 中性点接地方式对供电可靠性的影响分析[J]. 电网技术, 2015, 39(8): 2340-2345. [2] 董雷, 何林, 蒲天骄. 中性点接地方式对配电网可靠性的影响[J]. 电力系统保护与控制, 2013, 41(1): 96-101. [3] 黄顺建, 黄冏. 数据中心备用中压柴油发电机系统的电气保护配置方案[J]. 电气技术, 2019, 20(8): 103-106, 109. [4] 刘希禹. 通信局(站)接地系统新观念[J]. 电源世界, 2013(6): 21-28. [5] 凌智敏. 低压配电系统不同接地方式的兼容[J]. 建筑电气, 2018, 37(6): 3-9. [6] 张成功. 配电网系统中性点接地方式不停机切换控制逻辑设计[J]. 电工技术, 2019(23): 35-36, 40. [7] 徐丙垠, 李天友. 配电网中性点接地方式若干问题的探讨[J]. 供用电, 2015, 32(6): 12-16, 29. [8] 袁耀, 邹林, 喇元, 等. 10kV配电系统中性点接地方式选取的有效性分析[J]. 供用电, 2017, 34(5): 7-13. [9] 陈锐. 10kV配电网中性点接地运行方式的演变与智能配电网技术创新的关系[J]. 通信电源技术, 2020, 37(8): 63-66. [10] 李蜀光. TN系统电源中性点接地方式探讨[J]. 建筑电气, 2019, 38(2): 31-36. [11] 建筑电气工程施工质量验收规范: GB 50303—2015[S] GB 50303—2015[S]. 北京: 中国建筑工业出版社, 2016. [12] 陈谦. 多电源TN系统一点接地的误解剖析[J]. 建筑电气, 2017, 36(7): 3-7. [13] 低压电气装置第1部分: 基本原则、一般特性评估和定义: GB/T 16895 GB/T 16895.1—2008[S]. 北京: 中国标准出版社, 2009. [14] 董俊, 李一凡, 束洪春, 等. 配电网馈出线路单相永久性接地故障性质辨识方法[J]. 电工技术学报, 2020, 35(21): 4576-4585. [15] 贾奇, 张晓慧, 赵喜邈, 等. 配电网中性点接地方式研究[J]. 沈阳工程学院学报(自然科学版), 2018, 14(2): 154-158, 187. [16] 徐丙垠, 李天友, 薛永端. 配电网触电保护与中性点接地方式[J]. 供用电, 2017, 34(5): 21-26. [17] 刘渝根, 王建南, 米宏伟, 等. 10kV配电网中性点接地方式的优化研究[J]. 高电压技术, 2015, 41(10): 3355-3362. [18] 王厚余. 电磁干扰与电源的系统接地[J]. 建筑电气, 2015, 34(5): 3-5. [19] 邹甲, 刘祺, 欧明端, 等. 谐波监测式电气火灾监控系统设计[J]. 电气技术, 2023, 24(8): 22-28. [20] 潘超, 石晓博, 安景革, 等. 地铁杂散电流干扰变压器多场传播模-态分析[J]. 电工技术学报, 2024, 39(15): 4613-629. [21] 王厚余. 再论变电所的接地和杂散电流[J]. 建筑电气, 2011, 30(3): 3-6. [22] 魏波, 邓谊爽, 普朝鸿, 等. 剩余电流动作保护器在接地系统中的应用分析[J]. 电气技术, 2023, 24(3): 58-63. [23] 陈航宇, 李天友, 杨智奇. 低压配网剩余电流保护运行现状及相关措施分析[J]. 电气技术, 2021, 22(1): 104-108. [24] 刘希禹. UPS系统结构和性能分类[J]. 电信工程技术与标准化, 2004(1): 26-33. [25] 张燕琴, 陈正伟, 郑媛媛. 通信局房变压器系统接地及开关的选择[J]. 通信电源技术, 2016, 33(3): 43-45, 48. [26] 钟景华, 刘希禹, 肖斌, 等. UPS应用与供电系统设计技术探讨[J]. 电气应用, 2010, 29(22): 16-19. |
|
|
|