|
|
|
| Analysis of stator winding breakdown fault in a large pumped storage generator-motor |
| HUANG Hanyi1, ZHOU Xiaojun1, GUO Lianheng1, WANG Bogong2, FU Qiang3 |
1. Datang Xizang Energy Development Co., Ltd, Chengdu 610000; 2. Harbin Electric Machinery Company Limited, Harbin 150040; 3. Harbin Research Institute of Large Electric Machinery Company Limited, Harbin 150040 |
|
|
|
|
Abstract This paper deeply analyzes the stator winding breakdown fault occurres in a large pumped storage generator-motor. First of all, the insulation material properties of the stator bars, the electrical properties of the stator bars before leaving the factory and the anti-corona properties are analyzed. Then, the properties of the removed stator bars are tested and analyzed, and the insulation layer is dissected and the bonding state is detected. Finally, the cause of stator winding damage is analyzed according to the on-site inspection. The analysis results show that the breakdown of the stator winding is caused by a bolt falling into the stator winding when the bolt of the stator ventilate plate is not locked tightly during installation. When the generator-motor operates, the bolt grinds the insulation layer of the stator winding, leading to the stator winding breakdown. This paper provides a technical basis for improving the installation quality of large generator-motor stator windings and avoiding the similar significant safety accidents.
|
|
Received: 13 January 2025
|
|
|
|
| Cite this article: |
|
HUANG Hanyi,ZHOU Xiaojun,GUO Lianheng等. Analysis of stator winding breakdown fault in a large pumped storage generator-motor[J]. Electrical Engineering, 2025, 26(10): 79-84.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I10/79
|
[1] 安冬, 魏蔓. 抽水蓄能电站励磁系统水泵工况并网流程分析[J]. 电气技术, 2020, 21(11): 110-113. [2] 张津玮, 顾秀芳. 基于Gurobi的抽水蓄能电站优化运行分析[J]. 电气技术, 2018, 19(2): 22-26. [3] 吴毅, 简优宗, 杨合民. 大型抽水蓄能交流励磁机组发展的必要性及功能介绍[J]. 电气技术, 2015, 16(3): 118-121. [4] 刘向东, 聂靓靓, 金海云. 抽水蓄能发电机定子线棒绝缘击穿理化性能分析[J]. 绝缘材料, 2020, 53(11): 74-81. [5] 刘向东, 肖发福, 黄明浩, 等. 抽水蓄能发电机定子线棒绝缘击穿故障分析[J]. 水电能源科学, 2020, 38(12): 145-148, 175. [6] 张晓鹏. 汽轮发电机定子绕组单相接地故障原因分析[J]. 电工技术, 2024(19): 228-230, 234. [7] 罗霖. 水轮发电机组定子接地故障分析及防范措施[J]. 云南电力技术, 2023, 51(1): 71-73. [8] 吴乃科. 一起150MW汽轮发电机定子下层绕组线棒接地查找与处理分析[J]. 电器工业, 2022(3): 37-39. [9] 杨桂周, 李文栋, 陈珊英. 国外某水电站1号机定子线棒击穿原因分析及处理[J]. 水电站机电技术, 2021, 44(2): 48-50. [10] 李超峰. 新村电站发电机定子线圈绝缘击穿故障分析[J]. 小水电, 2016(3): 63-64. [11] 潘剑南, 李浩良. 发电机定子线棒层间垫条缺陷引起的绝缘击穿分析[J]. 大电机技术, 2022(6): 43-47, 54. [12] 张睿琦, 张书忠, 戴富宏, 等. 一例汽轮发电机运行中定子线圈接地故障案例分析[J]. 电气开关, 2023, 61(6): 96-98. [13] 席才仁抓西, 张波. 抽水蓄能机组定子接地故障的一种处理方法[J]. 装备维修技术, 2023(4): 90-94. [14] 王义凯, 尹项根, 谭力铭, 等. 基于三次谐波电势分布特征的发电机定子绕组接地故障定位方法[J]. 电工技术学报, 2023, 38(13): 3552-3562. [15] 王思宇, 周凯, 朱光亚, 等. 一种基于极化电流和脱陷电流的发电机定子线棒主绝缘劣化表征方法[J]. 电工技术学报, 2025, 40(1): 285-299. |
|
|
|