|
|
|
| Research and application of aqueous organic redox flow battery storage for coal-fired power frequency regulation |
| LIU Xuhua1, XUE Xiaofeng2, LIN Yibin2, LI Gang3, WANG Jing4 |
1. Xi' an Thermal Power Research Institute Co., Ltd, Xi' an 710054; 2. Huaneng Luoyuan Power Generation Co., Ltd, Fuzhou 350602; 3. Huaneng Yimin Coal and Electricity Co., Ltd, Hulunbuir, Inner Mongolia 021100; 4. Suqian Time Energy Storage Technology Co., Ltd, Suqian, Jiangsu 223805 |
|
|
|
|
Abstract To address frequency fluctuation challenges caused by high-penetration renewable energy integration, this study proposes a hybrid frequency regulation architecture combining aqueous organic redox flow batteries (AORFBs) with coal-fired power units. Leveraging the redox mechanisms of water-soluble organic electrolytes, AORFBs exhibit millisecond-level dynamic response, long cycle life, and inherent safety, effectively compensating for the thermal inertia delay of coal-fired units while reducing mechanical wear and enhancing regulation accuracy. By optimizing key technologies such as high-stability organic electrolyte synthesis and long-life ion membrane preparation, and implementing collaborative control strategies, the demonstration project verifies the effectiveness of the AORFB system in improving frequency regulation performance. Results demonstrate that coordinated control strategies achieve efficient thermal-storage synergy, with scalability potential to optimize lifecycle costs. This system provides a secure and reliable frequency regulation solution for future power grids, advancing energy transition through technological innovation.
|
|
Received: 27 May 2025
|
|
|
|
| Cite this article: |
|
LIU Xuhua,XUE Xiaofeng,LIN Yibin等. Research and application of aqueous organic redox flow battery storage for coal-fired power frequency regulation[J]. Electrical Engineering, 2025, 26(11): 1-6.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I11/1
|
[1] 黄健航, 王永刚, 夏永姚. 新型储能化学电源研究进展[J]. 电源技术, 2020, 44(6): 793-798. [2] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581. [3] 殷悦, 孙钢虎, 兀鹏越, 等. 混合储能调频工程经济性提升策略研究及应用[J]. 热力发电, 2024, 53(10): 81-89. [4] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5): 29-34. [5] PEDRAZA E, DE LA CRUZ C, MAVRANDONAKIS A, et al. Unprecedented aqueous solubility of TEMPO and its application as high capacity catholyte for aqueous organic redox flow batteries[J]. Advanced Energy Materials, 2023, 13(39): 2301929. [6] 李彬, 宋文明, 杨坤龙, 等. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. [7] XIANG Zhipeng, YANG Changyuan, LI Wenjin, et al. TEMPO microemulsion enabling extremely high capacity catholyte in aqueous organic redox flow batteries[J]. Chemical Engineering Science, 2025, 304: 121093. [8] 孔涛逸, 董晓丽, 王永刚. 水系有机液流电池活性材料研究进展[J]. 中国科学: 化学, 2023, 53(8): 1419-1436. [9] 黄策, 燕云飞, 沈迎, 等. 超容储能辅助火电机组调频的电气问题研究[J]. 电气技术, 2022, 23(8): 103-108. [10] 毛庆汉. 储能联合火电机组参与调频辅助服务市场的工程应用[J]. 电气技术, 2021, 22(7): 103-108. [11] 张霞峰, 柳畅, 单业奇, 等. 基于PID控制的智运机器人关键技术研究[J]. 机械工程与自动化, 2025, 54(1): 176-178. [12] 唐早, 刘佳, 刘一奎, 等. 基于随机模型预测控制的火电-储能两阶段协同调频控制模型[J]. 电力系统自动化, 2023, 47(3): 86-95. [13] 李蓓, 郭剑波, 惠东, 等. 液流储能电池在电网运行中的效率分析[J]. 中国电机工程学报, 2009, 29(35): 1-6. [14] 邢超, 肖家杰, 李培强, 等. 面向电网二次调频的多类型储能集成控制策略及经济性评估[J]. 储能科学与技术, 2023, 12(10): 3265-3274. [15] 祝东红, 宋浩宇, 郭学锋, 等. 有机液流电池的研究进展及在能源领域的应用前景[J]. 石油炼制与化工, 2025, 56(1): 11-23. |
|
|
|