|
|
|
| Analysis and treatment of a 500 kV zinc oxide lightning arrester fracture fault |
| CHEN Qingjun, LI Guoguang, XU Hai |
| Tangshan Electric Power Company, State Grid Jibei Electic Power Co., Ltd, Tangshan, Hebei 063000 |
|
|
|
|
Abstract Zinc oxide lightning arresters are widely used in power transmission and transformation systems due to their excellent non-linear volt-ampere characteristics. They are the main protective devices to protect power equipment from overvoltage damage. This study introduces a 500 kV zinc oxide lightning arrester fracture fault. Through the analysis of the line fault recording files and the stress on the connection terminal board, the fault occurrence sequence and cause are determined. Since the arrester adopts a wiring form where a long lead is directly connected to the outgoing line, and the voltage transformer is arranged on the outside, and the diameter of the arrester is relatively small, the arrester is subjected to a large wire pulling force in windy weather, resulting in the fracture of the arrester. To avoid similar faults, the connection mode of the down conductor is renovated in combination with the on-site situation, connecting the down conductor of the transmission line directly to the top terminal block of the voltage transformer. This method is simple and convenient for engineering application.
|
|
Received: 02 April 2025
|
|
|
|
| Cite this article: |
|
CHEN Qingjun,LI Guoguang,XU Hai. Analysis and treatment of a 500 kV zinc oxide lightning arrester fracture fault[J]. Electrical Engineering, 2025, 26(11): 80-84.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I11/80
|
[1] 刘振亚. 特高压交直流电网[M]. 北京: 中国电力出版社, 2013. [2] 万寿雄. 10kV不接地系统两相故障导致电压互感器避雷器爆炸事故分析[J]. 电气技术, 2021, 22(11): 56-62, 79. [3] 张雄清, 万方培, 杨珊, 等. 一起35kV变压器中性点避雷器故障分析[J]. 电气技术, 2019, 20(3): 115-117, 121. [4] 黄灵资, 刘昊. 基于带电检测技术的一起35kV金属氧化物避雷器缺陷分析[J]. 电气技术, 2019, 20(1): 112-115. [5] 王前斌, 罗化龙, 沈俊轶. 玉溪新兴钢铁公司10kV电压互感器爆炸事故分析[J]. 电气技术, 2015, 16(4): 125-127. [6] 蔡力, 田汭鑫, 魏俊涛, 等. 连续冲击电流脉冲下避雷器阀片电气性能研究[J]. 电工技术学报, 2023, 38(增刊1): 168-176. [7] 安希成. 一例220kV线路避雷器典型缺陷的发现及原因分析[J]. 电气开关, 2018, 56(3): 89-91, 94. [8] 戚俊, 张怡捷, 房睿. 避雷器泄漏电流异常的原因及处理措施[J]. 电力与能源, 2023, 44(6): 658-660. [9] 范乃心, 杨雪滨, 曲德浩, 等. 220 kV氧化锌避雷器泄漏电流异常分析[J]. 东北电力技术, 2024, 45(9): 21-25, 29. [10] 贾焦仁, 严明. 一起氧化锌电阻片侧面绝缘釉层短路引起的避雷器故障分析[J]. 电瓷避雷器, 2024(4): 29-36. [11] 潘浩, 杜涵, 马御棠, 等. 一起老旧500kV站用型避雷器故障原因分析[J]. 电瓷避雷器, 2022(6): 45-51. [12] 杜修明, 童涛, 龙国华, 等. 一起500kV避雷器故障原因分析[J]. 电瓷避雷器, 2022(3): 61-67. [13] 王琼, 辛力坚, 陈浩, 等. 220kV避雷器瓷套管基座断裂事故分析[J]. 电瓷避雷器, 2017(1): 149-153, 159. [14] 刘建月, 张志东. 一起避雷器爆炸事故分析[J]. 电气技术, 2023, 24(7): 73-76. [15] 林万德, 李子彬, 包正红, 等. 一起由受潮引起的750kV线路避雷器故障分析[J]. 电瓷避雷器, 2023(4): 84-89. [16] 谢特列, 许湧平, 马钢, 等. 高压变电站引下线系统在风-冰载荷作用下的力学响应研究[J]. 广东电力, 2021, 34(9): 111-119. [17] 吕中宾, 谢凯, 张习卓, 等. 特高压变电站引下线及连接金具系统力学特性分析[J]. 高压电器, 2017, 53(9): 30-37. [18] 国家电力公司东北电力设计院. 电力工程高压送电线路设计手册[M]. 2版. 北京: 中国电力出版社, 2003. |
|
|
|