|
|
|
| Research on early diagnosis of single-phase ground fault based on improved variational mode decomposition and deterministic learning |
| AN Xiaoyu1, ZHANG Zhaofeng1, WANG Qian1, SUN Zhiyin2, ZHANG Longbiao2 |
1. College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000; 2. Zhongbao Electric Co., Ltd. Research and Development Center, Zhengzhou 450001 |
|
|
|
|
Abstract To address the limitations of traditional threshold-based methods in diagnosing single-phase ground faults in distribution networks, specifically their reliance on manual experience and inadequate noise immunity, this paper proposes an adaptive threshold diagnosis method based on improved variational mode decomposition and deterministic learning. First, the osprey optimization algorithm optimizes the variational mode decomposition parameters to decompose the zero-sequence voltage signal. Significant intrinsic mode functions (IMFs) are selected based on the Pearson correlation coefficient between each IMF and the original signal, and noise reduction is achieved through signal reconstruction. Second, leveraging deterministic learning theory, local modeling and identification of fault dynamics are performed to extract dynamic trajectories encapsulating fault characteristics. By leveraging the morphological mutation characteristics of this trajectory before and after the fault, an adaptive detection threshold is constructed to rapidly capture the onset of the fault. PSCAD/EMTDC simulation and 10 kV distribution network true test data verification show that the proposed method can accurately identify the fault moment under complex working conditions and provide a reliable criterion for subsequent fault line selection and section positioning.
|
|
Received: 04 July 2025
|
|
|
|
| Cite this article: |
|
AN Xiaoyu,ZHANG Zhaofeng,WANG Qian等. Research on early diagnosis of single-phase ground fault based on improved variational mode decomposition and deterministic learning[J]. Electrical Engineering, 2026, 27(2): 1-12.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2026/V27/I2/1
|
[1] 李林, 高厚磊, 袁通, 等. 基于零序突变量的配电网单相接地故障检测与定位方法[J]. 电力系统自动化, 2025, 49(15): 157-167. [2] 黄劼, 汪逸帆, 林叶青, 等. 基于K均值聚类算法的谐振接地系统故障区段定位方法[J]. 电气技术, 2024, 25(3): 24-31. [3] 刘伟, 杨东风, 王洪志, 等. 基于格拉姆角场-改进残差网络的小电流接地系统故障选线[J]. 电气技术, 2023, 24(12): 14-19. [4] 董立明, 秦苏亚, 张宗熙, 等. 谐振接地系统高阻接地故障能量机理分析[J]. 供用电, 2022, 39(4): 52-58, 83. [5] 董俊, 李一凡, 束洪春, 等. 配电网馈出线路单相永久性接地故障性质辨识方法[J]. 电工技术学报, 2020, 35(21): 4576-4585. [6] 欧逸哲, 术茜. 基于SOM和K均值聚类的谐振接地系统故障选线及区段定位方法[J]. 电气技术, 2023, 24(10): 23-30. [7] 王晓卫, 王雪, 王璐, 等. 基于矩阵变换与模态分析的电缆型配电网单相接地故障区段定位[J]. 电工技术学报, 2025, 40(15): 4845-4859. [8] 刘健, 常小强, 张志华, 等. 基于零序电压的小电流接地系统高阻单相接地检测启动性能分析及其应用[J]. 供用电, 2023, 40(9): 27-35. [9] 沈茜, 金鹏, 胡国. 计及逆变型分布式电源的有源配电网单相接地故障分析[J]. 可再生能源, 2020, 38(7): 940-947. [10] 刘丰, 曾祥君, 谢李为, 等. 基于相电压差值极性的配电网单相接地故障检测方法[J]. 电力系统保护与控制, 2023, 51(15): 155-165. [11] 刘科研, 叶学顺, 李昭, 等. 基于多分辨率小波变换的配电网高阻接地故障检测方法[J]. 高电压技术, 2023, 49(10): 4247-4256. [12] 耿建昭, 王宾, 董新洲, 等. 中性点有效接地配电网高阻接地故障特征分析及检测[J]. 电力系统自动化, 2013, 37(16): 85-91. [13] 刘宝稳, 王晨雨, 曾祥君, 等. 三相分布参数不对称配电线路接地故障检测与消弧技术综述[J]. 高电压技术, 2023, 49(9): 3684-3695. [14] 柯亮, 李波, 廖凯, 等. 基于XGBoost的配电网高阻接地故障检测方法[J]. 电力系统保护与控制, 2024, 52(6): 88-98. [15] 陈恒. 基于迁移卷积神经网络的配电网高阻接地故障检测方法[J]. 计算技术与自动化, 2024, 43(3): 37-42. [16] 白浩, 潘姝慧, 邵向潮, 等. 基于小波去噪与随机森林的配电网高阻接地故障半监督识别方法[J]. 电力系统保护与控制, 2022, 50(20): 79-87. [17] 熊思衡, 刘亚东, 方健, 等. 配电线路早期故障辨识方法[J]. 高电压技术, 2020, 46(11): 3970-3976. [18] 郭谋发. 配电网单相接地故障人工智能选线[M]. 北京: 中国水利水电出版社, 2020. [19] Dragomiretskiy K, Zosso D.Variational mode decom-position[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [20] 吕中亮. 基于变分模态分解与优化多核支持向量机的旋转机械早期故障诊断方法研究[D]. 重庆: 重庆大学, 2016. [21] Dehghani M, Trojovsky P.Osprey optimization algo-rithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450. [22] 李奕轩, 田云娜. 多策略改进的鱼鹰优化算法及其应用[J]. 延安大学学报(自然科学版), 2024, 43(4): 99-108. [23] 王乾, 王聪. 基于确定学习理论和Lempel-Ziv复杂度的非线性系统动态特征提取[J]. 自动化学报, 2018, 44(10): 1812-1823. [24] Wang Qian, Wang Cong.Incipient fault detection of nonlinear dynamical systems via deterministic learning[J]. Neurocomputing, 2018, 313: 125-134. [25] Wu Weiming, Wang Qian, Yuan Chengzhi, et al.Rapid dynamical pattern recognition for sampling sequ-ences[J]. Science China Information Sciences, 2021, 64(3): 132201. [26] 肖文妍, 郭谋发, 林佳壕, 等. 基于多频带多特征融合的配电网单相接地故障选段方法[J]. 电气技术, 2024, 25(7): 7-14. [27] 徐桂培, 吴小宁, 张国龙, 等. 基于五次谐波特征数据的配网单相接地故障识别方法[J]. 电工技术, 2021(4): 70-72, 76. [28] 李卫国, 许文文, 乔振宇, 等. 基于暂态零序电流凹凸特征的配电网故障区段定位方法[J]. 电力系统保护与控制, 2020, 48(10): 164-173. |
|
|
|