Multiobjective Optimization based Charging Strategy for Electric Vehicles in Smart Grid
Guan Haoliang1, Wang Jinhua1, Qiu Weiyu2
1. School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350000; 2. Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan 32003
Abstract:Charging scheduling for electric cars and plug-in electric taxis in the smart grid is considered. A charging station may control the charging rate to maximize its revenue. For the underlying power system, maximizing the corresponding load factor is desired so that the system stability can be ensured. Maximizing the revenue and load factor simultaneously leads to a multiobjective optimization problem. A multiobjective approach is proposed to solve the multiobjective optimization problem, yielding a pareto optimal charging strategy. Numerical analysis is conducted to illustrate the effectiveness of the proposed multiobjective methodology.
[1] 徐武峰. 电动汽车充换电设施投资效益分析[J]. 电气技术, 2015, 16(4): 108-111. [2] 吴奇珂, 程帆, 陈昕儒. 5电能替代"战略中电动汽车的推广潜力及经济性分析[J]. 电气技术, 2016, 17(9): 88-92. [3] 李都红. 智能电网关键技术在新建机场区域型电力网络规划中的集成与应用[J]. 电气技术, 2014, 15(6): 106-108. [4] 杨冰, 王丽芳, 廖承林, 等. 不确定充电习惯对电动汽车充电负荷需求及充电负荷调节的影响[J]. 电工技术学报, 2015, 30(4): 226-232. [5] 潘樟惠, 高赐威. 电动汽车换电网络协调规划[J]. 电工技术学报, 2015, 30(12): 480-487. [6] Z Yang LS, Xing K. Profit maximization for Plug-In electric taxi with uncertain future electricity prices[J]. IEEE Trans. Power SystNov, 2014, 29(6): 3058-3068. [7] L Catarinucci DD, Tarricone L. An IoT-aware architecture for smart healthcare systems[J]. IEEE Internet of Things J. Dec, 2015, 2(6): 515-526. [8] J De Hoog TA, Mareels I. Optimal charging of electric vehicles taking distribution network constraints into account[J]. IEEE Trans. Power Syst Jan, 2015, 30(1): 365-375. [9] C Chen J W, Kishore S. MPC-based appliance scheduling for residential building energy management controller[J]. Sep, 2013, 4(3): 1401-1410. [10] Hsieh J T, Chiu W Y. Implementation of a transparent power information system on campus using existing infrastructures[J]. IEEE Vehicular Technology Con- ference Workshops, Glasgow, Scotland, May 2015: 1-4. [11] Chiu W Y. Analysis of an H ∞ design for dynamic pricing in the smart grid[C]//Proc. IEEE Conference on Decision and Control. NV, USA, 2016: 3234-3239. [12] Chiu W Y, Sun H, Poor H V. Energy imbalance management using a robust ppricing scheme[J]. IEEE Trans. Smart Grid, 2013, 4(2): 896-904. [13] Zhao S, Ming Z. Modeling demand response under time-of-use pricing[Z]. in Proc. 2014: 1948-1955. [14] http://www.pjm.com/Search%20Results.aspx?q=miner [15] M Pedrasa T S, Macgill I. Scheduling of demand side resources using binary particle swarm optimization[J]. Aug, 2009, 24(3): 1173-1181. [16] K Kumar B S, Wang D. V2G capacity estimation using dynamic EV scheduling[J]. Mar, 2014, 5(2): 1051-1060. [17] Chiu W Y. Method of reduction of variables for bilinear matrix inequality problems in system and control designs[J]. IEEE Trans. Syst., Man, Cybern, Syst, 2717, 47(7). [18] Chiu W Y, Chen B S, Poor H V. A multiobjective approach for source estimation in fuzzy networked systems[J]. IEEE Trans. Circuits Syst. I, Reg. Papers, 2013, 60(7): 1890-1900. [19] W Y Chiu H S, Poor H V. A multiobjective approach to multimicrogrid system design[J]. Sep, 2015, 6(5): 2263-2272. [20] Chiu W Y, Yen G G, Juan T K. Minimum manhattan distance approach to multiple criteria deeision making in multiobjective optimization problems[J]. IEE Trans. Evol. Comput., 2016, 20(6): 972-985.