Abstract:The traditional fault diagnosis methods for converter need to establish an accurate mathematical model to realize fault identification and location, but the modeling process is complex and it is impossible to establish a nonlinear system model. According to above problems, this paper adopts a data-driven method to realize the research of converter faults. The paper mainly divides the data-driven fault diagnosis types into three categories: converter fault diagnosis method based on statistical analysis, converter fault diagnosis method based on signal processing, and inverter fault diagnosis method based on artificial intelligence. After that, the basic research principles, applications and limitations are explained for three different methods. Finally, this paper proposes that the fault diagnosis of the converter should be prospected from the aspects of fault diagnosis methods, detection of new types of faults, online learning of fault modes and setting of data monitoring systems.
[1] 张勇, 夏杨红, 朱洁, 等. 基于双自由度控制的直流微网中多DG负极接地故障环流抑制[J]. 电网技术, 2018, 42(6): 1827-1836. [2] 张明锐, 王佳莹, 宋柏慧, 等. 基于等效馈线的孤岛微网并联逆变器间环流抑制策略[J]. 电气技术, 2018, 19(7): 1-8. [3] Pogaku N, Prodanovic M, Green T C.Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. Power Electronics, IEEE Transactions on, 2007, 22(2): 613-625. [4] 陈子龙, 冀卓婷, 郑重, 等. 基于传递函数和小波变换的变压器故障诊断研究[J]. 电气技术, 2017, 18(12): 30-37. [5] 陈勇, 刘志龙, 陈章勇. 基于电流矢量特征分析的逆变器开路故障快速诊断与定位方法[J]. 电工技术学报, 2018, 33(4): 1-9. [6] 伍珣, 陈特放, 成庶, 等. 基于输出电流轨迹的机车逆变器开路故障在线诊断方法[J]. 电工技术学报, 2017, 32(S2): 87-95. [7] Lei Yaguo, Jia Feng, Lin Jing, et al.An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147. [8] Cheng J S, Yu D J, Yang Y.A fault diagnosis approach for roller bearings based on EMD method and AR model[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 350-362. [9] Debebe K, Rajagopalan V, Sankar T S. Expert systems for fault diagnosis of VSI fed AC drives[C]//Industry Applications Society Meeting, 1991. Conference Record of the IEEE, 1991(1): 368-373. [10] Lee H J, Park D Y, Ahn B S, et al.A fuzzy expert system for the integrated fault diagnosis[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 833-838. [11] Simani S, Patton R J.Fault diagnosis of an industrial gas turbine prototype using a system identification approach[J]. Control Engineering Practice, 2008, 16(7): 769-786. [12] Namburu S M, Azam M S, Luo Jianhui, et al.Data- driven modeling, fault diagnosis and optimal sensor selection for HVAC chillers[J]. IEEE Transactions on Automation Science and Engineering, 2007, 4(3): 469-473. [13] Wen Long, Li Xinyu, Gao Liang, et al.A new convolutional neural Network-Based Data-Driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. [14] Cai Baoping, Zhao Yubin, Liu Hanlin, et al.A data- driven fault diagnosis methodology in Three-Phase inverters for PMSM drive systems[J]. IEEE Transa- ctions on Power Electronics, 2017, 32(7): 5590-5600. [15] Gomathy V, Selvaperumal S.Fault detection and classification with optimization techniques for a Three-Phase Single-Inverter circuit[J]. Journal of Power Electronics, 2016, 16(3): 1097-1109. [16] Chen D, Ye Y, Hua R.Fault diagnosis system for NPC inverter based on Multi-Layer principal component neural network[J]. Journal of Computers, 2013, 8(6): 1464-1471. [17] Gao J, Leng Z, Qin Y, et al.Fault diagnosis of subway auxiliary inverter based on PCA and WNN[C]// Proceedings of 2013 Chinese Intelligent Automation Conference. Springer Berlin Heidelberg, 2013. [18] Yang X D, Wang C L, Shi L P.A new implementation method of IGBT open-circuit fault diagnosis[J]. Power Electronics, 2014. [19] Park J H, Lee D J, Chun M G.Real-time fault diagnosis of induction motor using clustering and radial basis function[J]. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2006, 20(6): 55-62. [20] Li X, Ping L, Jiang L, et al.Fault diagnosis method of asynchronous motor based on heterogeneous infor- mation feature fusion[J]. Chinese Journal of Scientific Instrument, 2013, 34(1): 227-233. [21] Zheng Hong, Wang Ruoyin, Xu Wencheng, et al.Combining a HMM with a genetic algorithm for the fault diagnosis of photovoltaic inverters[J]. Journal of Power Electronics, 2017, 17(4): 1014-1026. [22] Tahan M, Monsef H, Farhangi S.A new converter fault discrimination method for a 12-pulse high-voltage direct current system based on wavelet transform and hidden markov models[J]. Simulation Transactions of the Society for Modeling&Simulation International, 2012, 88(6): 668-679. [23] Ntalampiras S.Fault diagnosis for smart grids in pragmatic conditions[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1964-1971. [24] Jin L Q, Chen F Y, Tang C P, et al.Multiple fault diagnosis for three-level inverter via wavelet analysis and support vector machine[C]//The 12th IEEE International Canference on Control & Automation, 2016: 6009. [25] Yang P, Li X, Ni J, et al.Fault diagnostic method for photovoltaic grid inverter based on online extreme learning machine[M]. Proceedings of the 2015 Chinese Intelligent Automation Conference. Springer Berlin Heidelberg, 2015: 495-503. [26] Li M N, Qian P, Wang W R, et al. Fault analysis and position of the tree-phase grid-connection inverter[J]. Applied Mechanics & Materials, 2014, 568-570: 1177-1181. [27] Wang L, Xu S J.Three-phase short-circuit fault information detection based on hilbert-huang transform[J]. Coal Mine Machinery, 2014. [28] Hao Y, Wang Q, Li Y, et al.An intelligent algorithm for fault location on VSC-HVDC system[J]. Inter- national Journal of Electrical Power & Energy Systems, 2018, 94: 116-123. [28] Hao Yongqi, Wang Qian, Li Yanan, et al.An intelligent algorithm for fault location on VSC-HVDC system[J]. International Journal of Electrical Power & Energy Systems, 2018, 94: 116-123. [29] 易凌帆, 颜拥军, 周剑良, 等. 基于支持向量机的核探测器电路故障诊断方法研究[J]. 原子能科学技术, 2015, 49(9): 1690-1694. [30] Wang T, Qi J, Xu H, et al.Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter[J]. Isa Transactions, 2016, 60: 156-163. [31] Hu Zhikun, Gui Weihua, Yang Chunhua, et al.Fault classification method for inverter based on hybrid support vector machines and wavelet analysis[J]. International Journal of Control Automation and Systems, 2011, 9(4): 797-804. [32] Ying J.Study on fault diagnosis of power electronic circuit for inverter based on SVM and GA[J]. Microelectronics, 2008, 38(6): 787-790. [33] Chen D, Ye Y, Hua R.Fault diagnosis of NPC inverter based on multi-layer SVM[J]. 2012, 308: 611-621. [34] Xu H, Zhang J, Qi J, et al.RPCA-SVM fault diagnosis strategy of cascaded H-bridge multilevel inverters[C]// International Conference on Green Energy. IEEE, 2014: 164-169. [35] 王永庆. 人工智能原理与方法[M]. 西安: 西安交通大学出版社, 1998. [36] 李晶, 栾爽, 尤明慧. 人工神经网络原理简介[J]. 现代教育科学, 2010(S1): 98-99. [37] Cherif B E, Bendiabdellah A.Detection of two-level inverter open-circuit fault using a combined DWT-NN approach[J]. Journal of Control Science & Engineering, 2018(3): 1-11. [38] Meireles M G, Almeida P M, Simoes M G.A comprehensive review for industrial applicability of artificial neural networks[J]. Industrial Electronics, IEEE Transactions on, 2003, 50(3): 585-601. [39] Khomfoi S, Tolbert L M.Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 2954-2968. [40] Sivakumar M, Parvathi R S.Application of neural network trained with meta-heuristic algorithms on fault diagnosis of multi-level inverter[J]. Research Journal of Applied Sciences, 2014, 9(6): 369-375.