Abstract:In combination with the virtual synchronous generator technology, the rotor angle droop control can be used in the inverter, that is, the virtual rotor angle droop control (VRAD), which can be used in standalone microgrid. However, the implementation of the existing VRAD requires large actual reactance within the inverter to ensure the correlation between active power and angle, but this approach will reduce voltage utilization. In this paper, a virtual reactance is simulated by the control logic to replace the actual reactance, thus avoiding the voltage source inverter voltage utilization being too low. This paper also analyzes the reason why the load variation in the new control mode is proportional to the rated capacity of the inverter in the multi-inverter, and compares the load sharing effect of different droop parameters, and gives the corresponding simulation results.
[1] Majumder R, Ghosh A, Ledwich G, et al.Angle droop versus frequency droop in a voltage source converter based autonomous microgrid[C]//2009 IEEE power & energy society general meeting, 2009: 4810-4817. [2] Majumder R, Ghosh A, Ledwich G, et al.Operation and control of hybrid microgrid with angle droop controller[C]//Tencon 2010: 2010 IEEE Region 10 Conference, 2010: 509-515. [3] Majumder R, Ledwich G, Ghosh A, et al.Droop control of converter-interfaced microsources in rural distributed generation[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2768-2778. [4] Majumder R, Chaudhuri B, Ghosh A, et al.Improve- ment of stability and load sharing in an autonomous microgrid using supplementary droop control loop[J]. IEEE Transactions on Power Systems, 2010, 25(2): 796-808. [5] Wei Q, Guo W, He N, et al.A new method to eliminate low-frequency oscillations[C]//IEEE Power & Energy Society General Meeting, 2013. [6] Wei Qiang, Han Xueshan, Guo Weimin, et al.Load following mechanism and power flow algorithm under generator rotor angle control mode[J]. IET Generation Transmission & Distribution, 2016, 10(7): 1510-1518. [7] Beck H P, Hesse R.Virtual synchronous machine[C]// Proceedings of the 9th International Conference on Electrical Power Quality and Utilisation, 2007: 107-112. [8] Visscher K, Haan S W H D. Virtual synchronous machines (VSG’s) for frequency stabilisation in future grids with a significant share of decentralized generation[C]//Smartgrids for Distribution, CIRED Seminar, 2008. [9] Yang Xiangzhen, Su Jianhui, Ding Ming, et al.Control strategy for virtual synchr onous generator in micro- grid[C]//2011 4th Inter- national Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011: 1633-1637. [10] Zhong Qingchang, Weiss G.Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transa- ctions on Industrial Electronics, 2011, 58(4): 1259-1267. [11] Wei Qiang, Guo Moufa.Rotor angle droop control of virtual synchronous generator in microgrids[C]// Proceedings of the 2016 IEEE Region 10 Conference (TENCON), 2016: 3826-3830. [12] 霍群海, 李宁宁. 微电网中微源逆变器带混合负载控制[J]. 电工技术学报, 2013, 28(S2): 270-277. [13] 刘斌, 卢雄伟, 熊勇, 等. 负荷按容分配的无线并联逆变系统收敛性分析[J]. 电工技术学报, 2015, 30(21): 90-98. [14] 唐俊. 含电机负荷的微电网下垂控制方法研究[D]. 成都: 西南交通大学, 2015. [15] Hu Jiong, Wu Yalu, Li Jian, et al.Research of synchronous generator angle measurement[J]. Power System Technology, 2006, 30(S2): 354-357. [16] 王成山. 微电网分析与仿真理论[M]. 北京: 科学出版社, 2013.