Bird nest detection based on improved YOLO algorithm
Yang Bo1, Cao Xuehong1, Jiao Liangbao1, Kong Xiaohong2
1. Artificial Intelligence Industry Technology Research Institute, Nanjing Institute of Technology, Nanjing 211100; 2. State Grid Nanjing Power Supply Company, Nanjing 211100
Abstract:This paper proposes an object detection model based on YOLO deep learning algorithm, which is used for automatic detection of nests in electric drone inspection. Through the distance-based K-means clustering algorithm, the marker sets of the dataset are re-clustered. And the anchor set which is more suitable for identifying the nests in different environments of different towers is obtained. The test results show that the mean average precision (MAP) of the algorithm using the new set is increased to 0.896 while the recall rate and the average cross-over ratio are improved. The algorithm processing is close to real-time (less than 30ms), which can maintain the application requirements of intelligent and normalized power inspection.
[1] 中国电力企业联合会. 中国电力行业年度发展报告2019. 中国电力行业年度发展报告2019[R]. http://www.cec.org.cn/yaowenkuaidi/2019-06-14/ 191782.html, 2019-06-14. [2] 戴宇辰, 叶青. 许安杰.配电线路鸟害故障预测模型研究[J]. 电气技术, 2018, 19(3): 100-102. [3] 王少华, 叶自强. 架空输电线路鸟害故障及其防治技术措施[J]. 高压电器, 2011, 47(2): 61-67. [4] Viola P, Jones M.Robust real-time object detection// Proceedings of the 2nd international workshop on statistical and computation theories of vision-modeling, learning, computing and sampling. Vancouver, Canada, 2001: 34-37. [5] 苑津莎, 崔克彬, 李宝树. 基于ASIFT算法的绝缘子视频图像的识别与定位[J]. 电测与仪表, 2015, 7(7): 106-112. [6] Gerke M, Seibold P.Visual inspection of power lines by UAS[C]//International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania: IEEE, 2014: 284-295. [7] Martinez C, Sampedro, Chauhan A, et al.Towards autonomous detection and tracking of electric towers for aerial power line inspection[C]//International Conference on Unmanned Aircraft Aystems, Orlando, USA: IEEE, 2014: 284-295. [8] Felzenszwalb P F, Girshick R B.Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010, 32(9):1627-1645. [9] Van N N, Robert J, Davide R.Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning[J]. International Journal of Electrical Power & Energy Systems, 2018, 99(7): 107-120. [10] Taigman Y, Yang M, Ranzato M A, et al.Deepface: closing the gap to human-level performance in face verification[C]//Computer Vision and Pattern Reco- gnition (CVPR), 2014 IEEE Conference on. IEEE, 2014: 1701-1708. [11] 王万国, 田兵, 刘越. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2): 256-273 [12] 杨晓旭, 温招洋. 深度学习在输电线路绝缘子故障检测中的研究与应用[J]. 中国新通信, 2018, 20(10): 208-210. [13] Nordeng I E, Hasan A, Olsen D, et al.DEBC detection with deep learning[C]//Scandinavian Conference on Image Analysis, Troms, Norway: Springer, 2017: 248-259. [14] Redmon J, Farhadi A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. [15] Liu W, Anguelov D, Erhan D, et al.SSD: single shot multibox detector[C]//European Conference on Com- puter Vision, Amsterdam, Netherlands: Springer, 2016: 21-37. [16] Ren S Q, He K M, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [17] He K M, Gkioxari G, Dollar P, et al.Mask RCNN[C]// Conference on Computer Vision and Pattern Recog- nition, Hawaii, USA: IEEE, 2017: 2980-2988. [18] Girshick R, Donahue J, et al.Rich feature hierarchies for accurate object detection and semantic segment- ation[C]//Computer Vision and Pattern Recognition (CVPR), Columbus, USA: IEEE, 2014: 580-587. [19] He Kaiming, Zhang Xiangyu, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [20] 郭敬东, 陈彬, 王仁书, 等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23.