电气技术  2016, Vol. 17 Issue (9): 70-76    DOI:
研究与开发 |
基于负荷转移调度的高耗能企业电能需量控制
邢文1, 2, 段斌1, 2, 3
1. 湘潭大学信息工程学院,湖南 湘潭 411105;
2. 湖南省风电装备与电能变换协同创新中心,湖南 湘潭 411105;
3. 智能计算与信息处理教育部重点实验室,湖南 湘潭 411105
Power Demanding Control for Energy-intensive Enterprises based on Load Transfer Dispatch
Xing Wen1, 2, Duan Bin1, 2, 3
1. College of Information Engineering, Xiangtan University, Xiangtan, Hu’nan 411105;
2. Cooperative Innovation Center of Wind Power Equipment and Energy Conversion, Xiangtan, Hu’nan 411105;
3. Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, Xiangtan, Hu’nan 411105
全文: PDF (9571 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对需量控制下高耗能企业用电响应的问题,基于现行两部制电价的前提下,考虑生产的基本电费成本,提出一种负荷转移调度的高耗能企业电能需量控制方法。本文采用Elman神经网络进行负荷预测,以最小化基本电费成本为激励,建立高耗能企业日前负荷转移调度模型,增大高耗能企业最大需量控制的可调控范围。并通过算例表明,在某钢铁企业实施负荷转移调度模型与不实施需量控制相比,日均基本电费降比约2.7%;比仅有智能设备实时需量控制时日均基本电费降比约1.04%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢文
段斌
关键词 负荷预测需量控制负荷调度需求侧管理智能设备神经网络    
Abstract:According to the problem of energy-intensive enterprises for using electrical response under demand control and then considering the cost of basic tariff in the production under the premise of the existing two-part tariff , therefore, a load transfer dispatch in energy-intensive enterprises approach is proposed for power demand control. We adopted the load forecasting by Elman neural network on this basis of minimizing the cost of basic tariff for motivation and established model of day-ahead load transfer dispatch in energy-intensive enterprises production. It could increase the range of maximum demand controlling for energy-intensive enterprises demand control system. The example shows that the daily basic tariff ratio is about 2.7% when implementing model of load transfer dispatch compared with no implementing demanding control, the daily basic tariff ratio is control about 1.04% compared against when only owned smart device real-time demanding.
Key wordsload forecasting    demand control    load dispatch    DSM    smart device    neural network   
收稿日期: 2016-09-22      出版日期: 2016-09-22
作者简介: 邢文(1988-),男,湘潭大学在读硕士研究生,研究方向为负荷预测和调度、需求响应。
引用本文:   
邢文, 段斌. 基于负荷转移调度的高耗能企业电能需量控制[J]. 电气技术, 2016, 17(9): 70-76. Xing Wen, Duan Bin. Power Demanding Control for Energy-intensive Enterprises based on Load Transfer Dispatch. Electrical Engineering, 2016, 17(9): 70-76.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2016/V17/I9/70