Optimal design of PCB coil for magneto resonant radio energy transmission system based on maximum efficiency product
Chen Zheng1, Yan Hai1, Mao Xingkui1, Lan Shifa2
1. College of Electrical Engineering and Automation of Fuzhou University, Fuzhou 350108; 2. Gutianxi Hydroelectric Power Station, Ningde, Fujian 352000;
Abstract:This paper expounds the working principle of magnetic resonance radio energy transmission, and analyzes the system modeling from the point of view of the circuit. The maximum efficiency product is considered as the optimization function in view of the low efficiency of the magnetic resonance radio energy transmission system to meet the maximum output power. In view of the relationship between the parameters in the coil design process, an optimal design method of the PCB coil with limited size is proposed. Given the maximum efficiency product as the objective function, combining theoretical analysis and simulations, the optimal design of the PCB coil with size limitations is proposed. Finally, a group of coils are constructed based on the optimization results, whose mutual inductance and AC resistances are also tested experimentally. The tested results match well with the calculations and simulations, thus verifying the feasibility of the proposed optimizing method.
陈政, 闫海, 毛行奎, 兰石发. 基于最大功效积的磁谐振无线电能传输系统的PCB线圈优化设计[J]. 电气技术, 2018, 19(3): 12-19.
Chen Zheng, Yan Hai, Mao Xingkui, Lan Shifa. Optimal design of PCB coil for magneto resonant radio energy transmission system based on maximum efficiency product. Electrical Engineering, 2018, 19(3): 12-19.
[1] Li H L, Hu A P, Covic G A, et al.Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters, 2009, 45(1): 76-U25. [2] Manolatou C, Khan M J, Fan S, et al.Coupling of modes analysis of resonant Channel add-drop filters[J]. IEEE Journal of Quantum Electronics, 2002, 35(9): 1322-1331. [3] Kurs A, Karalis A, Moffatt R, et al.Wireless power transfer via strongly coupled magnetic resonances[J]. Science (New York, N.Y.), 2007, 317(5834): 83-86. [4] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. [5] 姚辰, 马殿光, 唐厚君, 等. 超颖材料在无线电能传输中的应用方法[J]. 电工技术学报, 2015, 30(19): 110-119. [6] 丘小辉, 肖宇迪, 兰石发, 等. 磁谐振无线电能传输系统的PCB线圈优化设计[J]. 电器与能效管理技术, 2016(2): 28-35. [7] 张智娟, 董苗苗. 谐振式无线电能传输系统的研究[J]. 电子技术应用, 2013, 39(8): 54-56, 63. [8] 翟渊, 孙跃, 戴欣, 等. 磁共振模式无线电能传输系统建模与分析[J]. 中国电机工程学报, 2012, 32(12): 155-160. [9] Lee W S, Wang-Ik S, Oh K S, et al.Contactless energy transfer systems using antiparallel resonant loops[J]. Industrial Electronics, IEEE Transactions on, 2013, 60(1): 350-359. [10] 刘修泉, 曾昭瑞, 黄平. 空心线圈电感的计算与实验分析[J]. 工程设计学报, 2008, 15(2): 149-153. [11] 董苗苗. 磁耦合谐振式无线电能传输的研究[D]. 保定: 华北电力大学, 2014. [12] LEE T.The design of CMOS radio-frequency integrated circuits, second edition thomas H. Lee frontmatter more information[J]. Cambridge Univ Pr, 2004: 139-140.