电气技术  2019, Vol. 20 Issue (8): 59-63    DOI:
研究与开发 |
基于模拟退火粒子群算法的含分布式电源配电网故障定位
陈婷1, 2
1. 福建水利电力职业技术学院,福建 永安 366000;
2. 福州大学电气工程与自动化学院,福州 350116
Fault location of distribution network with distributed power supply based on simulated annealing particle swarm optimization
Chen Ting1, 2
1. Fujian College of Water Conservancy and Electric Power, Yong’an, Fujian 366000;
2. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116
全文: PDF (902 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 分布式电源接入配电网将会影响配电网的结构和潮流分布,因此本文提出了一种基于模拟退火粒子群算法的配电网故障定位方法。在粒子群算法中引入模拟退火算法,通过构建开关函数和适应度函数,实现了含分布式电源配电网的故障定位。算例仿真结果表明所提方法在多电源的单点故障和多重故障下都能准确的进行故障定位,有较好的全局收敛性和容错性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈婷
关键词 模拟退火算法粒子群算法配电网分布式电源故障定位    
Abstract:The access of distributed power supply to distribution network will affect the structure and power flow distribution of distribution network. By introducing simulated annealing algorithm into particle swarm optimization, fault location of distribution network with DG is realized by constructing switch function and fitness function. The simulation results show that the proposed method can accurately locate faults under single and multiple faults of multiple power sources, and has better global convergence and fault tolerance.
Key wordssimulated annealing algorithm    particle swarm optimization    distribution network    distributed power supply    fault location   
收稿日期: 2019-03-08      出版日期: 2019-08-19
基金资助:国家自然科学基金资助项目(61304260); 福建省中青年教师教育科研项目(JAT170961)
作者简介: 陈 婷(1985-),女,福建省闽清县人,硕士研究生,讲师,工程师,主要从事电力系统及其自动化与智能配电网等方面教科研工作。
引用本文:   
陈婷. 基于模拟退火粒子群算法的含分布式电源配电网故障定位[J]. 电气技术, 2019, 20(8): 59-63. Chen Ting. Fault location of distribution network with distributed power supply based on simulated annealing particle swarm optimization. Electrical Engineering, 2019, 20(8): 59-63.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2019/V20/I8/59