Abstract:With the continuous development of China's power system, the user's demand for electricity is higher and higher. As the terminal of power system, the distribution network must ensure its stable and reliable operation. In order to realize the maintenance of 10kV distribution network lines without power cut and meet the requirements of live working under various complicated conditions, this paper proposes a live working robot which can quickly replace the working arm, introduces its overall structure design, and describes the overall insulation equipment of the live working robot in detail, including insulating bucket, wireless transmission platform and working arm. In order to verify the insulation performance of the robot arm, a 10kV distribution network line model is established by using ATP-EMTP simulation software. The voltage and leakage current of the live working robot with and without insulation section are simulated and calculated under the normal operation of the line. The results show that the voltage and leakage current on the working arm will cause danger to the safety of operators when the insulation section is not added; the voltage on the working arm is 0.4μV and the leakage current is 0.4μA after adding 1cm nylon material, which is far less than the safety limit of live working.
陈振宇, 邹德华, 彭沙沙, 肖宏峰, 蒋智鹏. 10kV配电网带电作业机器人及其作业臂绝缘分析[J]. 电气技术, 2021, 22(10): 65-70.
CHEN Zhenyu, ZOU Dehua, PENG Shasha, XIAO Hongfeng, JIANG Zhipeng. Insulation analysis of live working robot and its working arm in 10kV distribution network. Electrical Engineering, 2021, 22(10): 65-70.
[1] HUANG Chengfu.System reliability for a multi-state distribution network with multiple terminals under- stocks[J/OL].Annals of Operations Research, https:// doi.org/10.1007/s10479-020-03546-3. [2] ZHANG Yuan, LI Shaoyuan, ZHENG Yi, et al.Multi- model based pressure optimization for large-scale water distribution networks[J]. Control Engineering Practice, 2020, 95: 104232. [3] POULIOT N, MUSSARD D, MONTAMBAULT S.Localization and archiving of inspection data collected on power lines using LineScout technology[C]// Applied Robotics for the Power Industry (CARPI), 2012:197-202. [4] MOREIRA P L F. Sistema robótico para inspeção de linhas aéreas de transmissão de energia elétrica[D]. Rio de Janeiro: Universidade Federal do Rio de Janeiro, COPPE, 2008. [5] CHITHAMACHARYULU P V, SASHANKA D P, KIRAN G U, et al.Design of automated hotline maintenance robot using haptic technology[J]. Inter- national Journal of Scientific and Research Pub- lications, 2014, 4(1): 1-6. [6] TUNGPATARATANAWONG S, OHISHI K, MIYAZAKI T.Robust motion control of industrial robot based on robot parameter identification and feedforward control considering resonant frequency[J]. IEEE Transactions on Industry Applications, 2005, 125(6): 568-574. [7] TSUKAHARA K, TANAKA Y, HE Y, et al.An experimental robot system for power distribution line maintenance robots-system architecture and bolt insertion experiment[C]//IEEE/RSJ International Con- ference on Intelligent Robots and Systems, 2008: 1730-1736. [8] 鲁守银, 马培荪, 戚晖, 等. 高压带电作业机器人的研制[J]. 电力系统自动化, 2003, 27(17): 56-58. [9] 赵玉良, 李运厂, 戚晖, 等. 高压线路带电作业智能化自动工具研究[J]. 制造业自动化, 2012(3): 12-14. [10] 宋屹峰, 王洪光, 李贞辉, 等. 面向断股补修作业任务的电力机器人机构设计[J]. 智能系统学报, 2017, 12(1): 1-7. [11] 宋屹峰, 王洪光, 王慧刚, 等. 基于视觉方法的输电线断股检测与机器人行为规划[J]. 机器人, 2015, 37(2): 204-211. [12] 周展帆, 严宇, 邹德华, 等. 高压输电线路带电更换防振锤机器人的研制[J]. 电力科学与技术学报, 2020, 35(2): 178-183. [13] 江维, 吴功平, 樊飞, 等. 高压线路四臂移动作业机器人BP网络联动控制[J]. 东北大学学报(自然科学版), 2016, 37(11): 1530-1535. [14] 彭向阳, 吴功平, 金亮, 等. 架空输电线路智能机器人全自主巡检技术及应用[J]. 南方电网技术, 2017, 11(4): 14-22. [15] 欧乃成, 李稳, 邹德华, 等. 具有快速上下线功能的带电作业机器人[C]//2015带电作业技术会议, 2015: 28-33. [16] 王秋杰, 金涛, 谭洪, 等. 基于分层模型和智能校验算法的配电网故障定位技术[J]. 电工技术学报, 2018, 33(22): 5327-5337. [17] 许寅, 和敬涵, 王颖, 等. 韧性背景下的配网故障恢复研究综述及展望[J]. 电工技术学报, 2019, 34(16): 3416-3429. [18] 詹启帆, 李天友, 蔡金锭. 配电网高阻接地故障检测技术综述[J]. 电气技术, 2017, 18(12): 1-7. [19] 邵嶽. 基于Kharitonov理论的巡检机器人关节电机鲁棒控制[J]. 电气技术, 2018, 19(4): 19-27.